
”Al. I. Cuza” University

Faculty of Computer Science

Bachelor’s Degree Thesis

Artificial Intelligence in

Computer Go

by

Florin Chelaru

Supervisors:

Liviu Ciortuz, Ovidiu Gheorghies

Ias, i, June 2008

Contents

Contents i

1 Motivation and goals 1

1.1 Introduction . 1
1.2 Heuristics for Monte Carlo Go . 2

1.2.1 Upper Confidence for Trees (UCT) 3
1.2.2 All-moves-as-first . 4
1.2.3 Rapid Action Value Estimation (RAVE) 4
1.2.4 Grandparent knowledge . 5

1.3 The Analyze-after approach to random simulations 5
1.4 Integration of Monte Carlo with GNU Go 7

1.4.1 GNU Go engine overview 7
1.4.2 Adding a Monte Carlo module to GNU Go 7

2 Preliminaries 9

2.1 The game of Go . 9
2.1.1 Basic rules . 9
2.1.2 Important consequences . 12
2.1.3 Ranks and ratings . 13

2.2 Computer Go as a field of Artificial Intelligence 14

3 Computer Go 17

3.1 General overview . 17
3.1.1 How does a good state look like? 17
3.1.2 The size of the territory . 18
3.1.3 Tactical information (example: weak points) 18
3.1.4 The expected outcome of the game 19

3.2 Old-fashioned Computer Go vs Monte Carlo Go 19
3.2.1 Old-fashioned Computer Go 19
3.2.2 Basic Monte Carlo Go . 21

i

ii CONTENTS

4 Combining Old-fashioned Go with MC Go 23

4.1 Basic ideas and goals . 23
4.2 General data structures . 23

4.2.1 Array List . 23
4.2.2 Heap Array . 25
4.2.3 Visited List . 26

4.3 Theoretic base and enhancements to Monte Carlo Go 28
4.3.1 The Random Simulation . 28

4.3.1.1 The näıve approach 28
4.3.1.2 The Common Fate Graph approach 33
4.3.1.3 The Analyze-after approach 35

4.3.2 The Multi-armed Bandit Problem 40
4.3.3 Upper Confidence for Trees 41
4.3.4 Key Positions Priority . 46

4.3.4.1 Creating a distribution using Bézier curves 47
4.3.5 First-play urgency . 49
4.3.6 Learning from past experience 49

4.3.6.1 Grandparent knowledge 50
4.3.6.2 The Experience Tree 51

4.3.7 All-moves-as-first . 53
4.3.8 Rapid Action Value Estimates 54

4.4 Adding Monte Carlo to GNU Go 55
4.4.1 GNU Go engine overview 55

4.4.1.1 Gathering information 55
4.4.1.2 Move Generators 56
4.4.1.3 Move Valuation 57

4.4.2 Adding a Monte Carlo module to GNU Go 58

5 Results and conclusions 61

5.1 The random simulation . 61
5.2 Monte Carlo GNU Go versus GNU Go 3.6 62

Bibliography 67

List of Figures 73

List of Tables 75

Index 77

Chapter 1

Motivation and goals

Throughout our work, we discuss the idea of combining old-fashioned Computer Go

with Monte Carlo Go. We explain our approach to adding a Monte Carlo module

to the GNU Go 3.6 engine. We also briefly present the features of our present

Monte Carlo with UCT implementation. We then discuss an analyze-after approach

to random simulations, and finally show some preliminary results of the entire work,

ideas for future work and conclusions.

1.1 Introduction

Go is an ancient Chinese game, its first historic references dating around the 4th

century B.C. In spite of its apparently simple rules1, its combinatorial complexity is

high, making it a challenge to create a strong engine for playing the game. As a result,

the best Computer Go programs reach only average human level of performance.

Although, at a first glance, other board games, like Chess seam to be harder and

more complex, the game of Go raises above them, having both the branching factor

and the game length significantly larger. In other words, the average number of legal

positions in an arbitrary state of Go ranges from slightly below 100, for the 9 × 9
board to a few hundred, in the case of the 19×19 board, while the maximum number

of possible choices in Chess barely surpasses a few dozens. Moreover, the problem of

finding an evaluation function is a difficult one, thus making it hard for programmers

to use the classic artificial intelligence techniques like alpha-beta search in order to

find good strategies.

1Visit Sensei’s library (http://senseis.xmp.net/) for a detailed description of the game.

1

http://senseis.xmp.net/

2 CHAPTER 1. MOTIVATION AND GOALS

Important efforts have been made for the purpose of creating a good Computer

Go playing program, which are commonly separated into two general categories:

Old-fashioned Computer Go, encapsulating classic artificial intelligence techniques

and strategies, and Monte Carlo Go, a recent approach based on probabilities and

heuristics.

First studies and research in old-fashioned Go started about forty years ago2 focusing

mostly on state representation, breaking down the game in goal-oriented sub-games,

local searches and local results, functions for evaluation and determining influence

and base knowledge for pattern matching [6]. There are several programs using this

approach, of which one of the best and the only one with available sources and

documentation is GNU Go.

Since the beginning of 1990’s3, and more intensely within the last 10 years, the atten-

tion has moved over some probabilistic approaches, the most important being Monte

Carlo Go. Monte Carlo is a simple algorithm, based on approximating the expected

outcome of the game. At each step, before generating a move, the program launches

a number of random simulations, starting with each available move, which are eval-

uated. The move with the best average score is picked as the best move and played.

Used along with various heuristics, it turned out to give birth to impressive results.

On 9 × 9 boards, the standard deviation of the random games is approximated to

35. For a one point precision evaluation, 1000 games give 68% statistical confidence,

while 4000 games 95%. Present CPU’s are able to compute about 10, 000 random

simulations per second, which means that the method works in reasonable time and

with enough statistical confidence [4].

Our focus falls upon three aspects. First of all, the most important Monte Carlo

heuristics which have already proven to be efficient. Secondly, finding a fast enough

algorithm for the Monte Carlo random simulation, so it becomes suitable for the

19 × 19 Go board, and thirdly, combining the two approaches by adding a Monte

Carlo module to the engine of GNU Go.

1.2 Heuristics for Monte Carlo Go

Being a relatively new approach, research is still open on the subject of Monte Carlo

applied to Go. Still, several heuristics have already shown themselves to give positive

results, of which some more than others. In this section we discuss about the most

2The first Go program was written by Albert Zobrist in 1968 as part of his thesis on pattern
recognition [22].

3The general Monte Carlo model was advanced by Bruce D. Abramson, who used it on
games of low complexity, such as 6x6 Otello [4]. In 1993, Bernd Brügmann created the first
9 × 9 MC Go program, Gobble [10].

1.2. HEURISTICS FOR MONTE CARLO GO 3

important of them, which either we have implemented or we consider that should be

implemented in a future version of our work.

1.2.1 Upper Confidence for Trees (UCT)

UCT represents an algorithm based on the Multi-armed Bandit problem4. The prob-

lem basically refers to the Exploration versus Exploitation dilemma, which consists of

searching for a balance between exploring the environment to find profitable actions

and taking the empirically best action as often as possible.

Formally, a K-armed bandit is represented by random variables Xi,i=1,K , where

each i is the index of a gambling machine, which on successive plays yields rewards

Xi1 , Xi2 , The rewards are independent and identically distributed according to

an unknown law with unknown expectation µi. Independence also holds for rewards

across machines; i.e., Xis and Xjt are independent for each 1 ≤ i < j ≤ K and

each s, t ≥ 1. The purpose of the gambler is to find a strategy of maximizing his

winnings.

It has been proven that, choosing at each step the machine which maximizes the

following formula (called UCB1-TUNED, or simply UCB1) ensures the play of the

overall best machine exponentially more often than the others:

Xj +

√
lnn
Tj(n)

·min
{

0.25, Vj
(
Tj(n)

)}
, (1.1)

where:

• Tj(n) is the number of times machine i has been played after the first n plays,

• Xi,s = 1
s

∑s
t=1Xit ; Xi = Xi,Ti(n) and

• Vj(s) =
(

1
s

∑s
t=1X

2
jt

)
− X

2
j,s +

√
2 lnn
s (an estimated upper bound of the

variance of machine j).

UCT consists of treating every node in the Monte Carlo tree as a bandit problem, all

move choices representing the machines. At first, for each available move, a random

simulation is launched. Then, at each step, the algorithm chooses the one for which

(1.1) has the greatest value5 and plays the next random game starting with it. The

rewards may be 1, if the game ended in favor of the color playing the first move or

0 otherwise.

4See [1] for a detailed description of the problem and the solution we use in our implemen-
tation of UCT.

5See [13] for an extended presentation of UCT.

4 CHAPTER 1. MOTIVATION AND GOALS

1.2.2 All-moves-as-first

This heuristic has an important word to say for the Monte Carlo Go playing engines,

since it allows the process of evaluating a move to divide the response time by the

size of the board. The idea is simple: after a random game with a certain score,

instead of just updating the mean of the first move of the random game, the heuristic

updates all moves played first on their intersections with the same color as the first

move. It also updates with the opposite score the means of the moves played first

on their intersections with a different color from the first move [8].

Basically, this updates the means of almost all moves in the game. Of course, the

heuristic isn’t entirely correct, since various moves may have different effects on the

game depending on the time they were played. Still, the speedup is worth taking into

consideration.

1.2.3 Rapid Action Value Estimation (RAVE)

RAVE6 is a heuristic used for generalizing the value of a move across all positions

in the subtree below a certain Go state. It is closely related to the all-moves-as-first

idea. Moreover, it provides a way of sharing experience between classes of related

positions. The strategy uses the following formula:

Q̂(s, a) =
1

n̂(s, a)

N∑
i=1

Îi(s, a)zi, (1.2)

where:

• zi is the outcome of the ith simulation: z = 1 if the game was won and z = 0
otherwise;

• Îi(s, a) yields 1 if position s was encountered at any step k of the ith game,

and move a was selected at any step t ≥ k, or 0 otherwise;

• n̂(s, a) =
∑N

i=1 Îi(s, a) counts the total number of simulations used to estimate

the RAVE value; and

• Q̂(s, a) represents the average outcome of all simulations where move a was

selected in the position s, or in any subsequent position.

The idea is to use (1.2), which is biased but with lower variance at the beginning of

the game, and gradually shift to the classic Monte Carlo value, unbiased and with

higher variance.

6A detailed description of RAVE and integration within Monte Carlo and UCT is provided
in [12].

1.3. THE ANALYZE-AFTER APPROACH TO RANDOM SIMULATIONS 5

1.2.4 Grandparent knowledge

Grandparent knowledge is an approach related to the two previous ones. It basically

uses the fact that moves at the same intersection, which are close in time, have close

influence over the outcome of the game. Let s be the current state and g be its

grandparent node. Then, at the time g was the current state, Monte Carlo explored

the uncles of s, i.e. the alternative moves to the parent of s, the one eventually

chosen. The idea is to combine the values of the sons of s with the values of its

uncles whenever s becomes the current node. Although the results of this technique

are not spectacular, we consider it worth mentioning.

1.3 The Analyze-after approach to random simulations

Our random simulation idea, which behaved the best in our tests, was to just play,

with no concern whatsoever for the rules, except that of not filling friendly eyes.

Then, when all the board is full, reanalyze the game and decide which moves were

illegal, which stones were captured and which territory belongs to whom. In order

to present this approach, we will formalize the concepts in the game of Go, so it is

easier to see the solution.

Let N the size of the board. Then B, the set of intersections and C, the set of colors,

can be written as:

B =
{

(x, y)
∣∣∣ 1 ≤ x, y ≤ N

}
and C = {black, white}.

We introduce a general concept of game:

Gk,k≥1 =
{
gk

∣∣∣ gk : {1, . . . , k} → B × C
}

Gk is the set of all games with k moves.

We aim to find a way of knowing the state of the board at any point of the game.

For that, we first define time, timegk
: B → {1, . . . , k}, as

timegk
(p) =

{
min

{
j ≤ k

∣∣∣ ∃c ∈ C : gk(j) = (p, c)
}

or

∞ , if no such j as above exists,

which represents the first moment during gk when the intersection p was occupied

by a stone of color c.

A first notion of board state, b̂gk
: B → C ∪ {empty} (one with no rules) is defined

below:

b̂gk
(p) =

{
c ∈ C , if gk(timegk

(p)) = (p, c)
empty , otherwise.

6 CHAPTER 1. MOTIVATION AND GOALS

Now, to introduce rules, we start with Np,p=(x,y) the set of neighbors for intersection

p:

Np = B ∩
{

(x+ 1, y), (x, y + 1), (x− 1, y), (x, y − 1)
}

.

The notion of worm, wgk,p ⊆ B, is defined inductively:

Base

wgk,p =

{
{p} , if b̂gk

(p) ∈ C
∅ , otherwise.

Inductive step

Let p′ ∈ wgk,p;
p′′ ∈ Np′

b̂gk
(p′′) = b̂gk

(p′)

}
⇒ p′′ ∈ wgk,p.

Moreover the worm liberties, L(wgk,p) ⊆ B, are written as:

L(wgk,p) =
{
p′′ ∈ B

∣∣∣ ∃p′ ∈ wgk,p : p′′ ∈ Np′ ∧ b̂gk
(p′′) = empty

}
.

In order to obtain the board, we use newness : G × P(B) → N giving the time the

latest stone of the worm was played:

newness(gk, w) = max
{
t ≤ k

∣∣∣ ∃p ∈ w : t = timegk
(p)
}

.

Finally, the state of a board, based on a game, bgk
: B → C ∪ {empty}, is defined

inductively as:

Base

(∀p ∈ B) b̂gk
(p) = empty ⇒ bgk

(p) = empty

Inductive step

Let wgk,p = argmin
wgk,p

{
newness(wgk,p)

∣∣∣∃p′ ∈ wgk,p : bgk
(p′) undefined

}
.

Then, ∀p′ ∈ wgk,p, bgk
(p′) =

{
empty , if L(wk,p) = ∅
b̂gk

(p′) , otherwise.
.

This result tells us that, having a sequence of completely arbitrary moves, we can

generate a valid Go board state, as if the rules had been followed from the beginning.

In other words, if we just placed stones on the board until there is literally no place

to move, there would be a way to extract a correct Go endgame board, having clearly

delimited territories, and the resulted board would be easy to evaluate.

The complexity of this approach is O(|B| + |W| log |W|), where O(|B|) is the time

required by filling the board and extracting the worms after and O(|W| log |W|) is

the time needed to sort the worms by their newness.

1.4. INTEGRATION OF MONTE CARLO WITH GNU GO 7

1.4 Integration of Monte Carlo with GNU Go

1.4.1 GNU Go engine overview

GNU Go starts by trying to get a good understanding of the current board position.

Using the information found in this first phase, and using additional move generators,

a list of candidate moves is generated. Finally, each of the candidate moves is valued

according to its territorial value (including captures or life-and-death effects), and

possible strategic effects (such as strengthening a weak group).

Although GNU Go does a lot of reading to analyze possible captures, life and death

of groups etc., it does not have a full-board lookahead and this is the main point

where improvements can be made7.

1.4.2 Adding a Monte Carlo module to GNU Go

We try to solve this latter problem of GNU Go, by adding the Monte Carlo module.

The functionality of this module is as follows.

A separate thread runs random simulations during opponent time, exploring the UCT

tree. Whenever a move is to be generated, the thread pauses, waiting for GNU Go’s

engine to generate a list of moves. Each of the moves has associated reasons summing

up to a value estimating how good it is. After the list is generated, Monte Carlo

resumes for a given amount of time, so that the confidence of its evaluation is good

enough. Then again, it pauses. At this point, every available move has an associated

winning probability. The next step is intuitive. For every move with positive score

in the list generated by GNU Go we take its value and multiply it by its winning

probability. This way, moves considered good both by GNU Go and Monte Carlo

are automatically chosen. Moreover, moves estimated by GNU Go to have the same

local influence, which in fact have different global importance in the game are overall

ranked accordingly by Monte Carlo. Also, inherent errors which appear in Monte

Carlo-only applications, due to lack of local precision, are eliminated thanks to GNU

Go’s old-fashioned Computer Go approach.

7For a full description of the GNU Go engine, visit the GNU Go documentation page:
http://www.gnu.org/software/gnugo/gnugo toc.html

http://www.gnu.org/software/gnugo/gnugo_toc.html

Chapter 2

Preliminaries

2.1 The game of Go

Go1 is an ancient Chinese board game, its first historic references dating some time

before the 4th century BC. Its original name, Wéiq́ı, which basically means board

game of surrounding [17], is rarely used in the western part of the world. Here, the

game is known as Go, the Japanese translation of Wéiq́ı. This is due to the fact that

early western players learned the game from Japanese sources. Along with the name,

most of Go concepts and terms have also become known through their Japanese

names.

2.1.1 Basic rules

There are several sets of rules for the game, of which the Chinese and the Japanese

ones are the most popular2. However, the differences are minor, not changing the

game in what tactics or strategies are concerned.

The game consists of two players, Black and White, alternatively placing stones3 of

their own color at the intersections of a square board. The standard board size is

19× 19, but there are also other popular sizes, like 9× 9 or 13× 13. Unlike most of

1See [24] for a more detailed description of the game - history, rules, tactics, strategy and
more.

2Throughout this paper we will refer only to the Japanese set of rules.
3Game piece.

9

10 CHAPTER 2. PRELIMINARIES

1 1
A

A

2 2

B

B

3 3

C

C

4 4

D

D

5 5

E

E

6 6

F

F

7 7

G

G

8 8

H

H

9 9

J

J

10 10

K

K

11 11

L

L

12 12

M

M

13 13

N

N

14 14

O

O

15 15

P

P

16 16

Q

Q

17 17

R

R

18 18

S

S
19 19

T

T

Figure 2.1: The board of Go

board games, Black starts. Because he moves second, White receives a compensation

called komi4. The komi usually has fractional values, to prevent jigo5.

The objective of the game is to control a larger part of the board. To achieve this,

each player tries to place his stones in such a way that they cannot be captured. A

stone (or a chain6) can be captured if it is completely surrounded by enemy stones7.

Each player’s final score consists of the number of empty intersections completely

surrounded by his color added to the number of captured enemy stones. The other

empty intersections are considered neutral and are not counted.

Figure 2.2: A stone in atari

In Go stones can be placed almost everywhere on the board. Still, there are two kinds

4A predetermined number of points added to the score of White at the end of the game. [28]
According to professional Go players, the komi should be set to 5.5, not depending on the board
size. However, the most popular value is 6.5.

5The result of a game where Black and White have an equal score, i.e., e drawn game. [28]
6Also called string or worm, a chain represents a group of game pieces of the same color,

directly connected on the board.
7The empty intersections around a chain are called liberties. When a chain has only one

liberty left, it is said to be in atari. If the chain loses all its liberties, it is removed from the
board (captured).

2.1. THE GAME OF GO 11

Figure 2.3: A suicide situation. Figure 2.4: A false suicide move.

of moves considered illegal. Take, for instance, the situation illustrated in Figure 2.3.

If Black moved at the marked intersection, his stone would have no liberty. That

situation is called suicide and is forbidden. Notice however, in Figure 2.4, that

if White placed his stone at the marked intersection, he would capture two black

stones. Thus, in this case the move would prove not to be suicide.

The other illegal move situation, called Ko8, is a move which produces an already

seen situation on the board. See the example in Figure 2.5: if White places his stone

in the marked intersection and Black moves back to D4, we reach the exact same

board configuration as we had at the beginning. As a consequence, Black can only

move to D4 after he places a piece somewhere else on the board. This way, the old

board position is not repeated.

1 1
A

A

2 2

B

B

3 3

C

C

4 4

D

D

5 5

E

E

6 6

F

F
7 7

G

G

Figure 2.5: A Ko situation

The game finishes when both players pass. Beginners pass when there is nowhere

else to move, except filling their own eyes9. Experienced players however, pass long

before all legal moves have ran out. In Figure 2.6 we have a board configuration

which allows the game to go on, and yet two advanced players would call it a game.

Supposing one of the players contested the other’s territory and the game went on,

then all his invading stones would end up being captured (Figure 2.7).

8The Japanese word for eternity.
9An eye is an empty intersection on the board surrounded by friendly stones where the

enemy cannot move, due to the suicide rule.

12 CHAPTER 2. PRELIMINARIES

Figure 2.6: A situation in which
two advanced players pass.

Figure 2.7: If the game went on,
it would finally end up in a state
like this.

2.1.2 Important consequences

Although the rules of the game themselves are few, they imply important conse-

quences which can be regarded as derived rules.

The most important of these consequences are the concepts of life and death. A

group of stones which has no possibility of connecting with other friendly stones can

be classified as alive or dead .

A group of stones is considered to be alive if it cannot be captured even if the

opponent is allowed to move first. Conversely, a group of stones is said to be dead

if the owner cannot avoid capture even if he is allowed to make the first move. If

the status of the stones depends on who makes the next move, the group is called

unsettled . The player who makes the first move either kills it, or makes it alive.

For a group of stones to be alive, it needs to have at least two eyes. This means

that there exists one stone within the group which has at least two liberties. The

opponent won’t be able to move inside, due to the suicide rule, and thus, he can

never capture it (or the stones in the same chain). Only one eye is not enough for

a group to be alive, since the enemy can eventually place a stone inside, taking the

last liberty of the group (see Figure 2.4 for a single eye capturing situation).

There is one exception where a group of stones is also considered to be alive. When

two or more groups of stones share the same liberties, it may come to a situation

where moving first would allow the opponent to capture. Thus, the groups remain

on the board. Such situations are called seki10.

10Japanese word, meaning mutual life.

2.1. THE GAME OF GO 13

Figure 2.8: An example of alive
groups (eyes are marked with
X).

Figure 2.9: An example of
seki (the common liberties are
marked with X).

2.1.3 Ranks and ratings

In Go, players are ranked similarly to martial arts (since the Go ranking system has

the same origin), by kyu and dans. Kyu grades (abbreviated k) are distinctions for

Go students and amateurs. Dan grades are for advanced amateurs and professionals.

When playing together, two players of different ranks play using handicap stones11.

The number of handicap stones played is equal to the rank difference between the two

players. For instance if a 5k plays a game with a 1k, the 5k would need a handicap

of four stones.

Here is a list of all rankings (lowest to highest):

Table 2.1: Go rankings (lowest to highest)[24]

Rank Type Range Skill Level

Double-digit kyu (geup in
Korean)

30− 20k Beginner

Double-digit kyu 19− 10k Casual player

Single-digit kyu 9− 1k
Intermediate am-
ateur

Amateur dan
1− 7d (where 8d is special
title)

Advanced ama-
teur

Professional dan
1−9p (where 10p is special
title)

Professional
player

11Handicap stones are stones placed on the board before the game starts, to even the odds
of winning for both players.

14 CHAPTER 2. PRELIMINARIES

2.2 Computer Go as a field of Artificial Intelligence

Computer Go is the term used to denote the part of artificial intelligence12 dedicated

to creating a computer program which plays Go [22]13.

In spite of legends and movies with robots fighting against mankind, in the world

of the early 21st century computer intelligence is still in its youth. In fact, artificial

intelligence in the proper sense hasn’t yet been born. The field of Computer Science

called artificial intelligence is about knowledge insertion and learning algorithms,

lacking one of men’s most important qualities, intuition.

Depending on the complexity of the problem, knowledge can be injected into a pro-

gram in various ways. For example, in a simple game, like Tic-Tac-Toe, the winning

strategy may be hard coded14. However, as problems grow more complex, new

strategies need to be developed. Computer science has witnessed important AI de-

velopments. One by one, various board games - of which Chess15 - became no longer

obstacles in front of AI16. One step further, Computer Go comes into discussion, as

its combinatorial complexity is exponentially larger than of any other board game.

The traditional AI methods used in Go require more speed and memory than any

present computer has to offer17. Although having simple rules, Go brings a challenge

to computer science, as no program has yet been created, which ranks higher than an

average human player. On a short analysis, taking into consideration the branching

factor, B, and game length, L, here is an estimation of the combinatorial complexity

of Go [6]:

{
B ≈ 200
L ≈ 200

⇒ BL ≈ 10400 � 10123(Chess) > 1058(Otello) > 1032(Checkers)

This makes global tree search18 intractable and non terminal position evaluation

hard.

12Abbreviated AI.
13See, for further reference, [7].
14This means that the developer will write code for every particular case which may occur

during the game.
15In May 1997, IBM’s Deep Blue Supercomputer defeated the world champion Garry Kas-

parov, using deep tactical tree search. [2]
16In 1994, Chinook beat Marion Tinsley at Checkers and in 1998, Logistello defeated the

best human at Otello [6].
17It is estimated that, for a game on a regular Go board of size 19 × 19, there are about

2.081 · 10170 legal game positions [27].
18Global tree search consists of iterating through all possibilities of play and identifying the

best one available.

2.2. COMPUTER GO AS A FIELD OF ARTIFICIAL INTELLIGENCE 15

Thus, when approaching architecture design of Computer GO, one should look for a

way of injecting intuition and learning capacity.

When learning to play a game, a human constantly asks himself - consciously or

unconsciously - questions like What should I move next? Would this be a good

move? What would I achieve by making this move? Beginners usually can’t see

many moves in advance and most often, just make the best apparent move available.

But along with experience and practice, they learn to recognize similar moves played

before, to choose those which previously turned out good and avoid the bad ones.

Also, they learn to predict more or less favorable situations a few moves in advance.

In the present work, we’ll try to accomplish an artificial intelligence capable of doing

just what we do, learn to play GO.

Chapter 3

Computer Go

3.1 General overview

3.1.1 How does a good state look like?

There are several ways to describe a good state. A competitive AI could take into

account as many of them as possible. Ideally, there would exist a way of completely

describing a good board configuration, and how it may be compared to others. How-

ever, although there are several unanimous accepted opinions, most features which

make a state better or worse are subjective and may differ, depending on the player

and his goals regarding the game1. We will, in the following, enumerate some of

these features, speaking a few words about each.

Here are some of a good state’s main characteristics2:

• The size of the territory.

• Tactical information (for example, weak points).

• The expected outcome of the game.

• The distance up to a good/bad state.

• The evaluation of professional players (base knowledge).

1For instance, a player may weigh a particular configuration of the board depending on
whether at the end of the game he wins or loses, while some other evaluates it as better if at
the end he owns larger territory than expected.

2These will be taken into consideration later on, when talking about algorithms.

17

18 CHAPTER 3. COMPUTER GO

3.1.2 The size of the territory

This is probably the most intuitive measure of a board configuration. Any Go player

should be able to look at a board and say ”it seams like you’re winning” or ”you’re

lost”. Moreover, without such a measure one can’t tell if the game is over, and if it

is over, what the final score was.

It is easy to notice that this parameter has a strong word to say at the end of the

game, when the possibilities of gaining over the opponent are fewer and the outcome

is more predictable (there are fewer chances of any turn of situation, and thus, the

evaluation is safer). On the other hand, at the beginning of the game, the size of

the territory may make all the difference in choosing one state over another.

In consequence, when looking for some winning path in the moves tree, one may

try to find those which get close to large territory end-states, while when trying to

find the next move at the beginning of the game, he’ll choose one which gains more

territory.

However, apart from the present, this evaluation doesn’t give us any information

about what is yet to come. In Go, turns of situation occur very often, and a greedy

strategy has no winning odds.

3.1.3 Tactical information (example: weak points)

A weak point is a point where the territory can be cut. Take, for instance, the

situation in Figure 3.1.

1 1
A

A

2 2

B

B

3 3

C

C

4 4

D

D

5 5

E

E

6 6

F

F

7 7

G

G

8 8

H

H
9 9

J

J

Figure 3.1: A cutting point situation

E4 is a weak point for white. A dangerous move is cutting the enemy’s territory by

moving to his weak point. To illustrate the importance of weak points, it is enough

to assume, in the previous example, that it is black’s turn. Although white owns

3.2. OLD-FASHIONED COMPUTER GO VS MONTE CARLO GO 19

more territory, black’s move at E4 leads, eventually, to winning the game. If it is

white’s turn, then any move elsewhere than at E4 becomes fatal3.

3.1.4 The expected outcome of the game

The expected outcome is defined as the expected value4 of game’s outcome given

random play from that node on[4].5

The expected outcome is used in Monte-Carlo heuristics to help predict what may

happen within the next moves. If we accept that a good state leads, in general,

to other good states, in other words, that good states are interdependent, then we

can imagine that in the game tree there are whole clusters of similarly (good) nodes.

Which means that in those clusters, there is a great probability of accidentally making

a good move. We concentrate on this idea in the latter part of our work. For now,

we just enumerate two of the important aspects of the expected value.

The first is straightforward: it gives a glance of the result of the game. If, after a

few moves the expected outcome increased, it means we’re on the right track.

Second is that if the expected outcome of the next few moves is good, it is likely

that the current state is good too, and also, chances are that the next move will lead

us to another good state.

It is, thus, fair to say that the expected outcome gives a somewhat good feel of how

good a state is.

3.2 Old-fashioned Computer Go vs Monte Carlo Go

3.2.1 Old-fashioned Computer Go

The first noted research in the field of Computer Go dates almost fifty years ago6.

Since then, there has been work in several areas of AI involving the game, including

board state representation7, pattern matching, tree search, automatic generation of

knowledge, and the list goes on.

3Notice that, in this case, if white chooses to extend territory instead of defending the weak
points, he loses the game.

4The expected value of a discrete random variable (not. E(X)) is the sum of the probability
of each possible outcome of the experiment multiplied by the outcome value (or payoff).[23]

5See Sections 3.2.2 and 4.3 for an in-depth use of the expected value concept.
6Lefkovits, 1960 [6].
7Zobrist hashing, 1969 [6]; Mathematical morphology [5]

20 CHAPTER 3. COMPUTER GO

When talking about old-fashioned Computer Go, we refer to the algorithms discovered

and researched up to the middle of 1990’s. Up to that point, the interest and effort

was concentrated onto injecting as much knowledge as possible inside the Go playing

engine.

The main factors of decision for evaluating a move were based on influence8, eval-

uating the status of groups9 and knowledge bases10, in other words, territory and

tactical information.

Figure 3.2: Influence on the board of Go. w=white influence, b=black influence,
m=mutual influence [16]

The underlining idea was to break the game into goal-oriented sub-games11 and the

board state into sub-states. Every one of the sub-problems would be assumed and

treated independently. For each move, there would be generated several reasons,

each having a certain score, for and against playing it. In the end, the move with the

highest summed score would be chosen as the next move.

The upsides of these techniques were numerous of which we’ll mention just three.

First of all, the computation time for each move generation would be rather small.

Secondly, in most cases, solving the sum of all sub-problems would come close to

solving the problem itself. Thirdly, on local situations we would get very much

accuracy.

The results are indisputable, raising old-fashioned Computer Go programs in the top

of Go-playing AI’s.

Still, with the advantages come a series of disadvantages, one of them being that

neither of the breaking stages developed so far are proven to be 100% correct. That is,

8Influence is closely related to territory. Basically, each stone on the board has a potential
to help other stones. This potential is called influence. [17]

9Is the group alive, dead or unsettled.
10Which means pattern matching over small regions of the board.
11String capture, connections, dividers, eyes, life and death, etc.

3.2. OLD-FASHIONED COMPUTER GO VS MONTE CARLO GO 21

in part, because sub-games are hardly ever independent. Also, because the algorithms

are based on domain-dependent knowledge, any potential new situation becomes

impossible to identify. Results aside, implementations also tend to be laborious and

time consuming.

3.2.2 Basic Monte Carlo Go

Since the beginning of 1990’s12, and more intensely within the last 10 years, the

attention has moved over some probabilistic approaches, the most important being

Monte Carlo Go.

Monte Carlo is a simple algorithm, based on approximating the expected outcome of

the game. At each step, before generating a move, the program launches a number

of random simulations, starting with each available move, which are evaluated. The

move with the best average score is picked as the best move and played.

The idea itself is intuitive and not at all spectacular. However, used along with

various heuristics, it turned out to give birth to impressive results. On 9× 9 boards,

the standard deviation of the random games is approximated to 35. For a one

point precision evaluation, 1, 000 games give 68% statistical confidence, while 4, 000
games 95%. Present CPU’s are able to compute about 10, 000 random simulations

per second, which means that the method works in reasonable time and with enough

statistical confidence. [4]

There are quite several ways of improving the speed of Monte Carlo, which we will

discuss in Chapter 4.

12The general Monte Carlo model was put forward by Bruce D. Abramson, who used it on
games of low complexity, such as 6x6 Otello [4]. In 1993, Bernd Brügmann created the first
9 × 9 MC Go program, Gobble [10].

Chapter 4

Combining Old-fashioned Go with

MC Go

4.1 Basic ideas and goals

We aim to use both the capacities of old-fashioned Computer Go and the advantages

given by the probabilistic approach offered by Monte Carlo. To accomplish this, we

use the engine of GNU Go 3.6, to which we have added a Monte Carlo module.

Each move considered by GNU Go has an associated winning probability, which helps

deciding upon the best move. The observed results were made on the 19×19 board,

which is the one that brings the toughest challenge to Computer Go.

4.2 General data structures

Since GNU Go’s implementation is entirely ANSI C based, we decided to go on the

same approach, preserving the coding style used so far and using the existent data

structures and methods as much as possible. We added, however, a series of new

structures which we knew to be useful from the experience of working with higher

level and object-oriented languages.

4.2.1 Array List

The Array List, as the name suggests, is a data structure combining the advantages

of an array, basically related to indexing, and those of a list, related to having flexible

23

24 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

size according to the needs of the developer. In other words, the Array List looks

to set a balance between speed (retrieving an item fast) and space (using no more

memory than needed). Particularly, it behaves as an indexed stack.

Figure 4.1 shows the structure as we designed it, where:

1 struct array list
2 {
3 void* inner list;
4 int count;
5 int capacity;
6 size t element size;
7 int (*compare)(const void *, const void *);
8 };
9

10 typedef struct array list* array list t;

Figure 4.1: The Array List structure

• inner list is used for holding the actual items of the array.

• count is the number of elements in the array, initialized to 0.

• capacity represents the total number of items which can be stored inside the

array.

• element size stores the size in bytes of an item, and finally,

• compare is a function which compares two items of the array (returning 0

if they are considered equal, 1 if the first is greater than the second and -1

otherwise).

Initially, the capacity is set to 2. Whenever an attempt is made to add an item to

the list, if the capacity doesn’t allow it (the inner list is full), then we double the

memory allocated for the elements of the list. After that, the item is just pushed at

the end of the list:

1 /* Returns index of the element added */

2 int

3 array list add(array list t list, void* element)

4 {
5 if (list->count == list->capacity)

6 {
7 list->capacity *= 2;

4.2. GENERAL DATA STRUCTURES 25

8 list->inner list = realloc(

9 list->inner list,

10 list->capacity * list->element size);

11 }
12

13 memcpy(list->inner list + list->count * list->element size,

14 element,

15 list->element size);

16

17 list->count++;

18

19 return list->count-1;

20 }

Let’s analyze the complexity of this approach. If |add(n)| is the number of oper-
ations required to add a number of n elements to the list, then

|add(n)| = c(n+
dlogn

2 e∑
i=1

2i) = c(n+ 2dlogn
2 e+1 − 1) < 5c · n, where c is constant.

Thus, the time complexity remains within the same order as that of the stack,
O(n).

Also, if size(n) is the size used by an array list containing n elements, then

size(n) = element size · 2dlogn
2 e < element size · 2n,

which means that the size complexity is also within O(n). Obviously, the items
are retrieved in O(1) time.

4.2.2 Heap Array

A heap is a binary complete tree in which the parent nodes are always better1

then their descendants. It is used in situations where the best item retrieval is
required in minimum time.

We combined the Array List with the notion of heap, resulting into this new
simple structure.

1Depending on the items stored, the notions of better and worse may vary. For example,
we may consider the best number in an array, the one having the greatest value. So the higher
number, the better.

26 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

1 struct heap array
2 {
3 array list t inner list;
4 int (*better than)(const void *, const void *);
5 };
6
7 typedef struct heap array *heap array t;

Figure 4.2: The Heap Array structure

Every node is an element in the array at index i, having its descendants at 2i +

1 and 2i + 2.2

The complexity of retrieving the best node is, evidently O(1). Inserting and
removing have both complexities of O(log n), where n is the number of nodes in
the heap.

4.2.3 Visited List

The Visited List represents a bit array used to keep track of whether a certain
number has been processed before. For example, when building information
about worms, we iterate from one stone to another through its neighbors. It
is desirable that we don’t visit a stone twice, since we want to make as few
operations and use as little memory as possible. For that purpose, we use a
Visited List, which keeps a bit of 1 for each visited stone. Whenever we meet a
new neighbor, we first check whether it has been visited before, and if it has, it
is skipped.

In Figure 4.3 we have a glance of the base structure, where:

• min represents the value of the minimum value we keep track of. Conversely,

• max is the maximum value kept

• mid is the first item in the right list

• left list and right list are bit arrays storing the data.

We can look at this structure as a union of two sets: [min, mid) ∪ [mid, max], the
first one being stored by left list, while the second one by right list.

2For more information about heaps and algorithm design see [18] [25].

4.2. GENERAL DATA STRUCTURES 27

1 struct visited list
2 {
3 int mid;
4 int min;
5 int max;
6 unsigned int *left list;
7 unsigned int *right list;
8 };
9
10 typedef struct visited list *visited list t;

Figure 4.3: The Visited List structure

Here too, we aim to balance speed and memory. Initially, both left list and
right list are ∅ (NULL). When the first number is visited, mid takes its value
and the right list is initialized, allocating 4 bytes (32 bits). So max becomes
mid+32−1 (the Visited List becomes ∅∪ [mid, mid+ 31]). Whenever a new value
is added, if it is less than min or greater than max, then the corresponding set is
reallocated so that it may store the new value. The values are stored by setting
their corresponding a bit. Figure 4.4 shows an example of the algorithm for the
case when a value smaller than min is added to the list.

1 void visited list set(int x) {
2 int dword size = sizeof(int); // 4

3 int bits per dword = dword size * 8; // 32

4
5 if (x < mid) {
6 if (x < min) {
7 int nr bits = logmid−x−1

2 + 1;

8 int nr dwords left = max(1, 2nr bits

bits per word);
9
10 left list = realloc(nr dwords left*dword size);
11
12 min = mid - nr dwords left*bits per dword;
13 }
14
15 bit = mid-x-1;
16 SET BIT(left list, bit);
17 }
18 ...
19 }

Figure 4.4: Adding a value smaller than min to the Visited List

28 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

Let |set(n)| be the maximum number of operations needed to store n numbers
into the Visited List. Then3

|set(n)| = n+
dδe∑
i=1

= n+
dδe(dδe+ 1)

2
, where δ = min{max− min + 1

32
, n}.

On the average, for a relatively compact set of values, the time complexity falls
within O(n). Also, the maximum amount of memory needed to store any number
n of values is 4δ bytes.

On the particular case where we used the Visited List, which is storing board
intersections, 1 ≤ min and max ≤ 361. The above formula becomes

|set(n)| = n+
dδe(dδe+ 1)

2
≤ n+ min{78,

n(n+ 1)
2

}.

4.3 Theoretic base and enhancements to Monte Carlo Go

In order to be able to use Monte Carlo on a 19 × 19 board and to expect some
results, we first need to focus on enhancing the algorithm by coming up with
speed optimizations and scoring heuristics.

We will break the current section into subsections concentrated on each aspect
considered in our work.

4.3.1 The Random Simulation

The purpose of the random simulation is to play a game with legal moves avoiding
to fill friendly eyes. All worms should be removed from board when captured and
the score evaluation, at the end of the game, should be accurate.

We will talk about three approaches, presenting advantages and disadvantages of
each, and concluding with results.

4.3.1.1 The näıve approach

The näıve approach consists of two steps: initialization and iteration.

In the initialization step, we create a list of all empty intersections on the board.
They are all, at first, considered legal potential moves.

3We consider the number of bits in an int to be 32.

4.3. THEORETIC BASE AND ENHANCEMENTS TO MONTE CARLO GO 29

1 array list t moves = CREATE INT ARRAY();
2
3 for (i=0; i<board size; i++)
4 for (j=0; j<board size; j++)
5 if (board[POS(i, j)] == EMPTY) {
6 array list add(moves, POS(i, j));
7 }

Figure 4.5: Initialization in the näıve random simulation approach

Then, in the iteration step, we extract at random, from the list of available
moves, one at a time. If the move is legal, does not fill any eyes and doesn’t
place any friendly worm into atari, then it is played and the game goes on. If the
move doesn’t fulfill all these requirements, it is disposed of and another one is
selected. Whenever a worm is captured, all its intersections are added to the list
of available moves, since they become empty. The process finishes when there
are no available moves left in the list.

1 int pos, n passes = 0;
2
3 while (moves->count > 0 && n passes < 2)
4 {
5 pos = play move(color, moves);
6
7 if (pos != PASS MOVE) {
8 n passes = 0;
9 } else n passes++;
10
11 color = OTHER COLOR(color);
12 }

Figure 4.6: Iteration step in the näıve random simulation approach

The implementation of this approach tends to get harder than its basic idea.

First of all, for the purpose of not altering the real state of the game, i.e. the
board, the number of captured stones of each color, etc., we need to store all this
information inside an auxiliary structure4.

Also, in order to know, at each moment in the iteration, whether the move is legal
or not, it captures any worms, puts friendly worms into atari, fills any friendly

4In our implementation, we used an existent structure in the GNU Go engine, called
board state.

30 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

1 struct board state {
2 int board size;
3 float komi;
4 int black captured;
5 int white captured;
6
7 Intersection board[BOARDSIZE];
8 ...
9 };

Figure 4.7: The board state structure

1 struct worm data
2 {
3 int origin;
4 int liberties;
5 };

Figure 4.8: The worm data
structure

eye, we need an additional data structure, containing basic information about
worms, i.e. the origin5 and liberties. We called it worm data.

The move selection algorithm expands into the following sequence of steps:

1 play move(

2 board state* state, colors color,

3 array list t moves, worm data worms[])

4

5 while (!found legal move && moves->count > 0)

6 {
7 move = array list pop random(moves);

8

9 if (move has no stones around) {
10 found legal move = true;

11 }
12

13 for (worm in adiacent enemy worms) {

If the move captures a worm, it is most likely legal (the only case where it weren’t
would be if the move were ko).

14 if (worms[worm].liberties == 0) {
15 found legal move = true;

16 capture(worm);

17 update(board);

18 }
19 }
20

5The origin of a worm represents the top left-most stone belonging to it.

4.3. THEORETIC BASE AND ENHANCEMENTS TO MONTE CARLO GO 31

21 if (!found legal move) {
22 if ((the stone is atari, or has no liberty) ||
23 (the stone is placed inside an eye))

24 continue;

25 } else {

The current stone, when placed, may connect two or more friendly strings, re-
sulting into a single worm. Before we may decide whether the move is legal or
not, we should first see if this worm loses its last liberty by this move. If it isn’t
then the move is considered safe.

26 worm =

27 connect adiacent frienly worms with stone();

28

29 if (worm.liberties != 0) {
30 found legal move = true;

31 } else {
32 // suicide

33 continue;

34 }
35 }
36 }
37

38 if (found legal move) {
39 state->board[move] = color;

40 update(worms);

41 }

This routine runs on an average, about 300 times per game, so we’ll analyze
the number of operations performed, to eventually find out how many random
simulations we may get in one second. We will use the following notations and
assumptions:

• rand - selecting a random move (line 7). This yields constant time, about
3-10 operations6.

• neighbors - iteration through neighbors to see their color, also constant
time consuming, yielding about another 10 operations.

6Depending, however, on the chosen random number generation algorithm.

32 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

• capture - capturing a worm and updating the board accordingly (lines 16-
17). This comes to a number of c · |worm| operations, where c >= 10 and
|worm| is the size of worm.

• connect - connecting the corresponding friendly worms (lines 26-27), coming
to
∑

neighbor friendly worm(c · |worm|), and finally,

• update - updating the worms (line 40), which counts about
∑

worm neighbor(c·
|worm|) operations.

Let |play move| be the approximate number of operations performed by play move.
Then,

rand+neighbors ≤ |play move| ≤ rand+neighbors+capture+connect+update.

At the beginning of the simulation, |play move| gets close, on an average, to
rand + neighbors, but at the end it almost always goes through connect and
update. Also, at the end, worms tend to be very long, thus yielding a greater
number of operations per move.

Suppose, on the average, the length of a worm is µ|worm| = 20, a stone has about
3 neighbor worms and the number of operations necessary to process a worm is
about c = 6. Then,

µ|play move| u rand+ neighbors+
nr neighbors∑

i=1

c · µ|worm|

u 10 + 10 +
3∑
i=1

6 · 20

= 380

is the average number of operations performed by this routine. As mentioned
before, the average number of moves generated by this approach per game is
about 300. If the CPU performs approximately 10,000,000 operations per second
it means that we get, on the average

cpu

nr moves · µ|play move|
=

10, 000, 000
300 · 380

u 90 games in one second.

Indeed, in practice, this approach didn’t achieve a level of more than 90-100
simulations per second, which made us look for a better idea7.

7See, for results of the näıve approach Section 5.1.

4.3. THEORETIC BASE AND ENHANCEMENTS TO MONTE CARLO GO 33

4.3.1.2 The Common Fate Graph approach

The Common Fate Graph8 term refers to a representation of the board of Go as
an undirected graph.

A board position can be represented by its full graph representation9, a graph
with the structure of an N × N square grid. Formally, FGR is defined as
GFGR = (P,E), an undirected connected graph, GFGR ∈ Guc. The set P =
{p1, p2, . . . , pNP

} represents the intersections on the board, with each node p ∈ P
having one of three given labels l : P → {black, white, empty}. The set E =
{e1, e2, . . . , eNE

} represents the vertical and horizontal neighborhood relation be-
tween intersections.

Figure 4.9: A board position
(FGR)

Figure 4.10: The board state
in Figure 4.9 transformed into a
Common Fate Graph

An important observation is that stones belonging to the same worm have the
same fate on the board. This means that all the stones in the worm share the
same liberties and neighbors. A stone in the worm is captured only when the
whole worm is captured. Based on this observation, each worm is represented as
a single node and each two nodes are connected by a single edge, representing
their neighborhood relation. The resulting reduced graph representation is called
a Common Fate Graph. Formally, we define the graph transformation T : Guc →
Guc by the following rule. Let pi and pj be two neighbor nodes, {pi, pj} ∈ E with
the same label l(pi) = l(pj) 6= empty. Then,

1. P 7→ P \ {pj};10

8Abbreviated CFG, see [14] and [19] for more details.
9Abbreviated FGR [14].

10The node pj melts into node pi.

34 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

2. E 7→ (E \ {{pj , pk} ∈ E}) ∪ {{pi, pk}|{pj , pk} ∈ E}.11

The graph resulted from repeating T over GFGR until no neighbor nodes have
the same label is the Common Fate Graph, GCFG.

This representation has its bad sides, one of them being the fact that the shape
of worms, the number of stones it contains and their structure are lost. These
disadvantages influence in some manner the outgoing of the random simulation,
but not in an essential way. Details are given below.

Even from the beginning, this approach shows itself better than the näıve one,
as far as complexity is concerned. The move selection process still has the same
steps, of which we’ll talk about the two of them, having the most important
word to say in determining complexity: capture and connect. Before we get into
counting operations, a few details of how we see the implementation. The graph
is represented by both adjacency lists and an adjacency matrix, since we need to
favor speed over space.

At every connection of two friendly nodes pi and pj , we iterate through the
neighbors of pj and add them to pi’s list. For every entry pk, we need to iterate
through its neighbors and change every occurrence of pj into pi.

Capturing is a bit harder, since, as mentioned earlier, the structure of worms
is lost. In other words, we don’t have an easy way to remove a worm from the
board, i.e. to replace one single worm (node) having the label white or black with
the nodes representing the stones belonging to it, having the label empty. There
are two ways of solving this problem. The first is to run backwards the process
of transformation, until we find out all the intersections belonging to the worm.
This approach, however, is time expensive, which we cannot afford at this step.
The second is to just consider the worm as part of the enemy territory and to
play on without moving inside it. This variant has the disadvantage of making
the game somehow inaccurate in what game play authenticity is concerned. The
accuracy can, however, be improved: when there is no legal move left except
those inside worms, we create the FGR graph, restore the empty intersections
and then re-create the CFG, after which the game may go on. This can be done
several times, as long as needed to balance accuracy with speed.

Supposing that one will use our second approach for capturing, which consumes
as much time as connecting friendly worms (that is, the time required to update
the neighbors), we will only talk about the time complexity of this process. More
exactly, we’ll talk about connecting two worms with a friendly stone. Let connect
be the number of operations required to perform this job. Also, let p1, p2 and p3

11Connect the node pi to all the neighbors of pj .

4.3. THEORETIC BASE AND ENHANCEMENTS TO MONTE CARLO GO 35

be the three nodes which have to be connected. Then,

connect =
3∑
i=1

(
|neighbors(pi)|+

∑
p∈neighbors(pi)

|neighbors(p)|
)

.

4.3.1.3 The Analyze-after approach

The CFG approach eliminates, indeed a lot of overhead, and intuition tells us
to just use it. Still, there is the stone capturing problem and the relatively high
amount of operations required by connect.

Our third idea, which turned out to behave the best, was to just play, with no
concern whatsoever for the rules, except that of not filling friendly eyes. Then,
when all the board is full, reanalyze the game and decide which moves were
illegal, which stones were captured and which territory belongs to who. In order
to present this approach we will formalize the concepts in the game of Go, so it
is easier to see the solution.

Let N the size of the board. We define B, the set of intersections on the board
and C, the set of possible colors for a stone:

B =
{

(x, y)
∣∣∣ 1 ≤ x, y ≤ N

}
and C = {black, white}.

Then, the set of possible moves in a game can be written asM = B×C. Having
these defined, we introduce a general concept of game:

Gk,k≥1 =
{
gk

∣∣∣ gk : {1, . . . , k} →M
}

Gk is the set of all games with k moves. Particularly, G0 = {g0 | g0 : ∅ →M} is
the set containing the game where no moves have been made (leaving the board
empty). Also, G =

⋃
k≥0 Gk is the set of all possible games (having no rules),

where any g ∈ G is called a game.

In order to know what is the state of the board in a game gk, at any moment of
time t, we define the function timegk

: B → {1, . . . , k}, as

timegk
(p) = min

{
1 ≤ j ≤ k

∣∣∣ ∃c ∈ C : gk(j) = (p, c)
}

.

If there is not such j, then timegk
(p) = ∞. The value timegk

(p) represents the
first moment during gk when the intersection p was occupied by a stone of color
c.

Now we can define a first notion of board state, b̂gk
: B → C ∪{empty} (one with

no rules applied to it):

b̂gk
(p) =

{
c ∈ C , if timegk

(p) <∞ and gk(timegk
(p)) = (p, c)

empty , otherwise.

36 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

Having all these, the only thing that remains is to introduce rules, and finally
have the state of the board based on a game, all rules respected. First, the set
Np containing the neighbors of the intersection p:

Np = B ∩
{

(x+ 1, y), (x, y + 1), (x− 1, y), (x, y − 1)
}

, where p = (x, y).

Then, the notion of worm, wgk,p ⊆ B, defined inductively:

Base

wgk,p =

{
{p} , if b̂gk

(p) ∈ C
∅ , otherwise.

Inductive step
p′ ∈ wgk,p

p′′ ∈ Np′

b̂gk
(p′′) = b̂gk

(p′)

⇒ p′′ ∈ wgk,p.

Let wgk,p ⊆ B be a worm in the game gk. Then its liberties, L(wgk,p) ⊆ B, are:

L(wgk,p) =
{
p′′ ∈ B

∣∣∣ ∃p′ ∈ wgk,p : p′′ ∈ Np′ ∧ b̂gk
(p′′) = empty

}
.

Similarly, we can write the set of worm neighbors, N(wgk,p) ⊆ B:

N(wgk,p) =
{
p′′ ∈ B

∣∣∣ ∃p′ ∈ wgk,p : p′′ ∈ Np′

}
\ wgk,p.

Each worm has a coefficient of newness, newness : G ×P(B)→ N giving the time
the latest stone of the worm was played:

newness(gk, w) = max
{

1 ≤ t ≤ k
∣∣∣ ∃p ∈ w : t = timegk

(p)
}

.

The coefficient of newness helps determine the correct state of the board at each
moment in time. Finally the state of a board, based on a game, bgk

: B →
C ∪ {empty}, is defined inductively as:

Base
∀p ∈ B, b̂gk

(p) = empty ⇒ bgk
(p) = empty

Inductive step

Let wgk,p = argmin
wgk,p

{
newness(wgk,p)

∣∣∣ ∃p′ ∈ wgk,p : bgk
(p′) is undefined

}
.

Then, bgk
(p′) =

{
empty , if ∀p′′ ∈ N(wgk,p) : bgk

(p′′) 6= empty

b̂gk
(p′) , otherwise.

, ∀p′ ∈ wgk,p.

This result tells us that, having a sequence of completely arbitrary moves (their
order not respecting any rule of Go), we can generate a valid Go board state, as if

4.3. THEORETIC BASE AND ENHANCEMENTS TO MONTE CARLO GO 37

the rules had been followed from the beginning. In other words, if we just placed
stones on the board until there is literally no place to move, there would be a
way to extract a correct Go endgame board, having clearly delimited territories.
The resulted board would be easy to evaluate and the road to get to it is a simple
and especially, fast one.

Having all of that said, the algorithm idea comes straightforward. Initialization
remains the same as the one of the naive random simulation approach. Iteration
changes slightly, to include computation of time (lines 2 and 7):

1 int pos, n passes = 0;

2 int moment = 0;

3

4 while (moves->count > 0 && n passes < 2)

5 {
6 pos = play move(color, moves);

7 time[move] = ++moment;

8

9 if (pos != PASS MOVE) {
10 n passes = 0;

11 } else n passes++;

12

13 color = OTHER COLOR(color);

14 }

Also, after iteration, there are two more steps which need to be performed before
the evaluation of the board: building of worm information and removing from
the board the captured strings.

15

16 array list t worms = CREATE WORM ARRAY();

17 build worm infos(state, worms, time);

18 capture worms(state, worms);

And scoring becomes a simple formality:

19

20 // positive result means white wins

21 return state->komi + state->white captured

22 - state->black captured;

38 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

where state->white captured and state->black captured are calculated as:

white captured =
∣∣∣{p ∈ B | b̂gk

(p) = black ∧ bgk
(p) = empty}

∣∣∣
and

black captured =
∣∣∣{p ∈ B | b̂gk

(p) = white ∧ bgk
(p) = empty}

∣∣∣
Move selection changes to include only the random and neighbors parts:

1 play move(board state state, colors color,

2 array list t moves)

3 {
4 while (!found legal move && moves->count > 0)

5 {
6 move = array list pop random(moves);

7

8 if (move fills an eye) {
9 continue;

10 } else {
11 found legal move = true;

12 }
13 }
14

15 if (found legal move) {
16 state->board[move] = color;

17 return move;

18 } else {
19 return PASS MOVE;

20 }
21 }

For the purpose of implementing build worm infos, we created a structure called
intuitively worm info given in Figure 4.11, where

• stones contains the indexes of all stones belonging to the worm.

• neighbors contains the indexes of the neighbors in the array with all worms.

• visited neighbors, as the name suggests, is used for tracking the already
processed neighbors, so we don’t iterate through any of them twice.

• latest stone is the value of newness(worm).

4.3. THEORETIC BASE AND ENHANCEMENTS TO MONTE CARLO GO 39

1 struct worm info
2 {
3 array list t stones; // the one dimensional index

4 array list t neighbors; // the indexes of the neighbor

5 // worms

6
7 visited list t visited neighbors;
8
9 int latest stone; // the latest stone in the worm

10 unsigned has liberties : 1;
11 unsigned color : 2;
12 unsigned : 5;
13 };
14
15 typedef struct worm info *worm info t;

Figure 4.11: The Worm Info structure

• has liberties is 1 if the worm has at least one liberty and 0 otherwise. And

• color is 1 if the worm is white and 2 if it is black12

Let’s analyze the complexity of this approach. First of all, the initialization time,
init = c1 · |B|, which is within O(|B|). Then, the iteration part, iter = rand · |B|,
also within O(|B|). Building worm information, build worm infos = c2 · |B| has
the same complexity, O(|B|). Capturing worms, capture worms, encapsulates
two steps: sorting the worms by their lateness and removing stones from the
board. The first has complexity O(|worms|·log|worms|2), where |worms| represents
the number of strings on the board, while the second, O(|B|). In consequence,
capture worms = c3 · |worms| · log|worms|2 +c4 · |B|. Summing up, if analyze after
represents the number of operations performed by this approach, then

analyze after = (c1 + rand+ c2 + c4) · |B|+ c3 · |worms| · log|worms|2 .

In our implementation, this sum raised to about 8, 000, meaning 8, 000 operations
per simulation, which yielded approximately 1, 200 games in a second. Although
not perfectly accurate and missing some game plays, this approach behaved won-
derful, giving excellent results, for which reason we decided upon using it.

12We used 2 bits for storing explicitly 1 and 2, since 0 is in general reserved for empty.

40 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

4.3.2 The Multi-armed Bandit Problem

The multi-armed bandit problem13 is associated with the Exploration versus Ex-
ploitation dilemma, which can shortly be described as searching for a balance
between exploring the environment to find profitable actions and exploiting the
best of the already known part of it.14

The problem of the multi-armed bandit is the simplest instance of this dilemma,
having thus been extremely studied in statistics (Berry & Fistedt, 1985), but
also in several areas of artificial intelligence like reinforcement learning (Sutton
& Barto, 1998) and computer optimization, such as genetic algorithms. It can be
formulated as follows. A multi-armed bandit, also called a K-armed bandit is a
slot machine having more than just one lever (K levers), or otherwise, a series of
K classical slot machines. When played, each machine provides a reward drawn
from a distribution associated to that specific machine. The objective of the
gambler is to maximize the collected reward sum through iterative pulls. The
gambler has no prior knowledge of the machines. The crucial trade-off he faces
at each trial is between exploitation of the machine with the highest expected
payoff and exploration - getting more information about the expected payoffs of
the other machines.

Formally, the multi-armed bandit is defined by random variables Xi, i=1,K , where
each i is the index of a slot machine (i.e. the arm of the bandit). Successive
plays of machine i yield rewards Xi1 , Xi2 , . . . which are independent and iden-
tically distributed according to an unknown law with unknown expectation µi.
Independence also holds for rewards across machines; i.e., Xis and Xjt are inde-
pendent (and usually not identically distributed) for each 1 ≤ i < j ≤ K and
each s, t ≥ 1.

Algorithms choose the next machine to play depending on the obtained results
of the previous plays. Let Ti(n) be the number of plays the machine i has been
played after the first n plays (

∑K
i=1 Ti(n) = n). Since the algorithm doesn’t

always make the best choice, its expected loss is studied. Then, the regret after
n plays is defined by

µ∗ · n−
K∑
j=1

µjE[Tj(n)], where µ∗ = max
1≤i≤K

µi.

E[·] denotes expectation. Authors of [1] propose a strategy called UCB1, based on
maximizing the upper confidence bound of each machine. The resulting algorithm

13See [26] for a more detailed description of the multi-armed bandit problem and [1], [13] for
its solving approach, referenced in our paper.

14See also [15].

4.3. THEORETIC BASE AND ENHANCEMENTS TO MONTE CARLO GO 41

is proved to achieve logarithmic regret uniformly over n, when rewards are in
[0, 1]. Let

Xi,s =
1
s

s∑
t=1

Xit be the average reward of machine i after s plays and

Xi = Xi,Ti(n), its average reward, in n overall number of plays done so far.

Then we have:

Algorithm 1. Deterministic policy: UCB1

• Initialization: Play each machine once.

• Loop: Play machine j that maximizes Xj +
√

2 lnn
Tj(n) .

A formula with better experimental results is suggested in [1] and [13]. Let

Vj(s) =
(1
s

s∑
t=1

X2
jt

)
−X2

j,s +

√
2 lnn
s

be an estimated upper bound on the variance of machine j. Then the new value
to maximize becomes:

Xj +

√
lnn
Tj(n)

·min
{

0.25, Vj
(
Tj(n)

)}
. (4.1)

According to [1] and [13], the policy maximizing (4.1), named UCB1-TUNED,
performs substantially better than UCB1 in all experiments. For this reason, we
only used UCB1-TUNED15 in our work.

4.3.3 Upper Confidence for Trees

As mentioned in Section 3.2.2, given a state, basic Monte Carlo follows the next
simple steps: it launches random simulations starting with each available move.
After a certain amount of time, it picks the move having the best average out-
come and plays it. Having presented the problem of the multi-armed bandit and
the exploration versus exploitation dilemma, it is now easy to see a certain re-
semblance between it and the problem of choosing the next move in the Monte
Carlo approach.

Let’s suppose that, after a few random simulations, some of the moves keep giving
bad results, while others, better ones. The algorithm, as presented so far, doesn’t

15Which will be, however, referenced as UCB1, for simplicity.

42 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

use this information in any way, and keeps exploring the bad moves with the same
probability as the good ones. What we would need is to exploit the good moves
by running simulations starting with them more often, while not wasting time
with the bad ones. So here too, we need to set a balance between exploration
and exploitation when choosing from moves with different winning probabilities.

What we will do is to associate each current Go position to a bandit problem.
Playing a machine means launching a random simulation starting with a certain
move derived from the current position. The reward may either be 1, if the game
is won, or 0 otherwise. So the algorithm goes as follows. Initially, every available
move is played once. At each iteration, instead of playing a randomly chosen
move, we will elect the best one corresponding to the UCB1 formula.

In order to implement UCT, we created two specific structures, uct tree and
uct node, and associated with each of them various operations. In Figure 4.12
we have the uct node structure of which we will discuss in the following lines.

1 /* A node in the UCT tree */

2 struct uct node
3 {
4 short move; /* the index of the move in the 1-D board

5 or 0 if the node represents the state of

6 the empty board */

7 unsigned color : 2;
8 unsigned has unvisited moves : 1;
9

10 float value; /* the sum of all values */

11 int n visits;
12
13 heap array t children; /* the children of the node,

14 stored inside a max-heap */

15 struct uct node *parent;/* parent of the node */

16 };
17
18 typedef struct uct node* uct node t;

Figure 4.12: The UCT node structure

A UCT node represents a state of the board in a particular game. Thus, it is
composed of:

• move, a number between 1 and N2, representing the index of an intersection
on the board, counting from the upper-left corner to bottom-right;

4.3. THEORETIC BASE AND ENHANCEMENTS TO MONTE CARLO GO 43

• color, which may be empty, if the node is the root of the tree, or black/white
otherwise;

• has unvisited moves, a flag which is set if there are unvisited legal moves
available from this node;

• value, representing the sum
∑Ti(n)

t=1 Xit , where i is the index of the current
node and Xit is the outcome of the simulation t, which may be 1, if the
game was won by the player corresponding to the node and 0 otherwise;

• n visits, the number of simulations containing this node, namely Ti(n);

• children, a heap containing the nodes deriving from this one. The best
item in the heap is the one with the greatest value for UCB116;

• parent, the parent UCT node of the current one, if there is such (the
current node isn’t the root of the tree).

In order to build the tree, we used the algorithm advanced in [13], which we
present in Figure 4.13. In common words, the algorithm descends in the UCT
tree, by choosing, at each step, the node with the greatest value for UCB1. When
a leaf is encountered (a node yet unvisited), it launches a random simulation
starting with it, and updates the entire line starting with the leaf, and up to the
current node, with the value retrieved.

1 void uct play one sequence(
2 uct node t current node, board state *state)
3 {
4 float outcome;
5
6 uct node t iter = current node;
7 do
8 {
9 iter = uct descend by ucb1(iter, state);
10 }
11 while (iter->visited);
12
13 outcome = uct node update value by mc(iter, state);
14 uct update value(iter, outcome);
15 }

Figure 4.13: UCT as described in [13]

Here’s how it works17.

44 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

Figure 4.14: UCT: The beginning of
the algorithm. A random simulation
is launched. Its outcome was a fa-
vorable one, so the mean value of the
node becomes 1. The mean value of
the parent node is also 1.

Figure 4.15: UCT: Legal moves are
still available. Thus, another game
is launched. This time, the current
color lost, so the mean value for the
newly created node is 0, while its
parent’s becomes 1

2 .

Figure 4.16: UCT: No available legal move remains, so the node with the greatest
UCB1 value is chosen. A random game is played beginning with it as the first
move. The corresponding color lost, so the mean value of its new son is 0. Notice
that all its ancestors are updated as well (its father has now the mean value of
1
2 , while its grandparent, 2

5).

At first, a random simulation is launched, and its value stored inside the root
node. A new child node is created (Figure 4.14). Then, another game is launched
for another unvisited move, its value backed up and another child node created
(Figure 4.15). The process goes on until there is no unvisited legal move. From
this point, at each step, the node with the best UCB1 value is chosen, and a new
random simulation is launched starting with it. The outcome is saved, and its

16See Section 4.2.2 for the way a heap array is built.
17See [6] for reference.

4.3. THEORETIC BASE AND ENHANCEMENTS TO MONTE CARLO GO 45

Figure 4.17: UCT: The algorithm after a few iterations. Notice how the node
yielding better results has been visited more often.

ancestors updated (Figure 4.16). The algorithm runs until a certain amount of
time runs out (Figure 4.17).

UCT runs in a minimax fashion, since the best move for one color is the one
that minimizes the other color’s chances of winning. The goal of the search is
the optimal branch at the root node. It is acceptable, however, if one branch
with score near to the optimal one is found, especially in the case of Go, where
the depth of the tree is large and the branching factor is big, as it is often too
difficult to find the optimal branch within short time. As shown in [13], in this
sense, UCT outperforms alpha-beta search from at least three perspectives.

First of all, it works in an anytime manner, meaning that we can stop the algo-
rithm at any moment, and its performance can be somehow good. This is not the
case of alpha-beta search. Figures 4.18 and 4.19 show the difference between the
way each of the trees, UCT and alpha-beta, evolves in time. With alpha-beta,
if we stop it prematurely, some moves at the first level remain unexplored. So
the chosen move can be far from optimal. Of course, iterative deepening can be
used, and partially solve this problem. Still, the anytime property is stronger for
UCT, making it easier for it finely control time.

Secondly, UCT is robust as it automatically handles uncertainty in a smooth
way. At each node, the computed value is the mean of the value for each child
weighted by the frequency of visits. Then the value is a smoothed estimation of
max, as the frequency of visits depends on the difference between the estimated
values and the confidence of these estimates. Then, if one child-node has a much
higher value than the others, and the estimate is good, this child-node will be
explored much more often than the others. Also, UCT will select most of the

46 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

Figure 4.18: The way a UCT tree
grows. The shape of the tree en-
larges asymmetrically, according to
the best explored move. Yet, all the
legal moves are also explored. If,
at this point, the algorithm stops,
a good decision can be made based
upon the way the tree evolved so far.

Figure 4.19: The way an alpha-beta
tree grows. The algorithm only ex-
plores few possible moves in a lim-
ited time (the light gray nodes repre-
sent unvisited nodes). This happens
often during large-sized tree search,
where entire search is impossible.

time the maximum child node. However, if two child-nodes have a similar value,
or a low confidence, then the value will be closer to an average.

Thirdly, the tree grows in an asymmetric manner: it explores more deeply the
good moves and this is achieved in an automatic manner.

4.3.4 Key Positions Priority

Since the Go moves tree can get so large, many of the nodes remain unvisited.
Because of this, some of their parents create a wrong impression (either bad or
good) because none of their significant children got to be explored in time.

One minor fix to this problem is to change the order in which moves are visited,
favoring zones of the board where playing is considered better most of the time.
In other words, the order of exploring child moves for the first time should be
dictated by the importance of the position on the board. For example, a move
in the corner, or on the edge is generally considered to be a bad move, no matter
what the state of the game is, while the ones close to the marked intersections
(D4, Q4, etc.) are, in general, better. So these moves should have priority when
exploring for the first time.

4.3. THEORETIC BASE AND ENHANCEMENTS TO MONTE CARLO GO 47

Figure 4.20: Intersections, according to Key Positions Priority. The better inter-
sections (strong gray) have better probabilities of being chosen.

4.3.4.1 Creating a distribution using Bézier curves

In order to have a distribution according to intersection importance, we decided
to generate a graphic which could be tuned according to our needs. The graphic
would have to look like the one in Figure 4.21. What we did was to use the
equation of a Bézier curve, which is easily customizable.

In the mathematical field of numerical analysis, a Bézier curve is a parametric
curve important in computer graphics and related fields18. Four points P0, P1,
P2 and P3 in the plane or in three-dimensional space define a cubic Bézier curve.
The curve starts at P0 going toward P1 and arrives at P3 coming from the
direction of P2. Usually, it will not pass through P1 or P2; these points are
only there to provide directional information. The distance between P0 and P1

determines how long the curve moves into direction P2 before turning towards
P3.

The parametric form of the curve is:

B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3 , t ∈ [0, 1].

18See [21] for a detailed description of Bézier curves.

48 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

Figure 4.21: Key Positions Priority: Distribution. To every move category i ∈
{0, . . . , 8} in Figure 4.20 corresponds an interval [a, b] ⊂ [0, 1], [a, b] =

{
x ∈

[0, 1]
∣∣∣(x, y) ∈ f ⇒ y ∈ [i, i + 1]

}
, where f is the function which generated the

graphic.

Determining f = {(x, y) ∈ B(t)|t ∈ [0, 1]} based on B can be a time consuming
problem, since it involves solving a cubic equation. However, in our case this
isn’t necessary, since we don’t need exact precision. All we need is that, given an
x ∈ [0, 1], we find an interval [a, b] with y u f(x) ∈ [a, b], which corresponds to
the move category we want to select.

The algorithm goes as follows. Initially, we define a number of intervals propor-
tional to the precision we want to reach, let’s say, maxt. We then split [0, 1] into
maxt intervals, ti, generating a point (xi, yi) for each: (xi, yi) = B(ti). We store
the points in an array, sorted by x. Whenever we need the approximate value of
f(x) for a given x, we binary search through our point array and find i such that
xi ≤ x < xi+1. The corresponding yi = f(xi) u f(x), is the value we’re looking
for.

Coming back to setting a move priority, choosing a move according to our defined
distribution becomes a trivial job. Whenever we need to select an available legal
intersection for the next move, we generate a random number r ∈ [0, 1]. Then,
we find [a, b] and i such that r ∈ [a, b] and [a, b] = {x|f(x) ∈ [i, i + 1]}. Finally,
we select at random a move from the category i and launch the random game
starting with it.

4.3. THEORETIC BASE AND ENHANCEMENTS TO MONTE CARLO GO 49

4.3.5 First-play urgency

UCB1 algorithm begins by exploring each arm once, before using the formula
(4.1). This can sometimes be inefficient, especially if the number of trials is not
large comparing to the number of children. This is the case for numerous nodes
in the tree (number of visits is small comparing to the number of moves). For
example, if an arm keeps returning 1 (win), there is no good reason to explore
other arms.

As suggested in [13], we used an heuristic called first-play urgency, which consists
of using a threshold, FPU for each node, which controls how urgent it is. If the
value of the node for formula (4.1) is greater than this threshold, then the move
has priority over unvisited moves. The FPU is by default set to∞ for each legal
move before first visit (see line 11 in Figure 4.13). Any node, after being visited
at least once, has its urgency updated according to UCB1 formula. We play the
move with the highest urgency. Thus, the FPU ∞ ensures the exploration of
each move once before further exploitation of any previously visited move. On
the other way, smaller FPU ensures earlier exploitations if the first simulations
lead to an urgency smaller than FPU (in this case the other unvisited nodes are
not selected).

1 // First play urgency (FPU)

2 if (N CHILDREN(node) > 0)
3 {
4 uct node t son = uct node max ucb1 child(node);
5
6 if (UCB1(son) >= FPU)
7 {
8 return son;
9 }
10 }

Figure 4.22: First-play urgency

In our implementation, we added to the function uct play one sequence the
code in Figure 4.22, before checking for unvisited legal moves.

4.3.6 Learning from past experience

Although, for the 9×9 and 13×13 boards, the algorithms and heuristics presented
so far are sufficient for an engine to to give impressive results, the 19×19 board

50 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

is more demanding, needing a bit more in order to have coherence in its actions.
For this, we used two improvements to the ideas presented so far.

4.3.6.1 Grandparent knowledge

The first idea is the one presented in [13], called grandparent knowledge, which
basically uses the fact that moves on the same intersection, close in time, have
similar influence over the outcome of the game. Let c be the current state and g
be its grandparent node. Then, at the time g was the current state, Monte Carlo
explored the uncles of c, i.e. the alternative moves to the parent of c, the one
eventually chosen. The idea is to combine the values of the sons of c with the
values of its uncles whenever c becomes the current node.

Figure 4.23: Grandparent knowledge: Monte Carlo explores moves as usual.
With each actual move, the current node changes, and before we start exploring
its children, all the values of the uncles update the corresponding sons.

Figure 4.23 illustrates how it works. The formula we used is as follows.

son->value← son->value + uncle->value

son->n visits + uncle->n visits
· son->n visits

Formally, we can write the mean of the current node, taking account of the above
formula, as:

Xs =
1

Ts(nc) + Tu(ng)

(Ts(nc)∑
t=1

Xst +
Tu(ng)∑
t=1

Xus

)
,

where:

4.3. THEORETIC BASE AND ENHANCEMENTS TO MONTE CARLO GO 51

• c represents the current node;

• s represents the son currently updating;

• g is the grandparent of the current node;

• u is the uncle of the current node, corresponding to s. Then,

• Ts(nc) is the number of visits for the son, and

• Tu(ng) is the number of visits for the uncle.

In other words, the new mean of the son being updated is the average value
of all the simulations launched both from the son and from the uncle. This
approach works very well, especially on the 19×19 board, where the results are
very satisfactory.

4.3.6.2 The Experience Tree

The experience tree, or memory tree, as we called it, represents a UCT tree created
and saved in past games. When exploring a move, before visiting all its sons,
our algorithm first loads from the memory tree any sons this node may have as
if they were already visited.

This speeds up the beginning of the game and increases the accuracy of Monte
Carlo, since it allows it to search deeper into the tree, the first nodes being already
explored. Of course, the results can be seen only at the beginning of the game,
since towards the end, boards differ very much and it is very hard to run into an
exact same position as in a previous game.

In order to implement this concept, so that we can store a tree in a file, we created
a structure called uct memory node, shown in Figure 4.24, where:

• next sibling is the index of the next sibling of the current node, if there
is such, or 0 otherwise;

• first child is the index of the first child, or 0, if the current node has no
children;

• n children, move, color, value and n visits store the corresponding
data of a UCT node.

52 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

1 struct uct memory node
2 {
3 int next sibling;
4 int first child;
5
6 short n children;
7 short move;
8 enum colors color;
9

10 float value;
11 int n visits;
12 };
13
14 typedef struct uct memory node *uct memory node t;

Figure 4.24: The memory node structure

The nodes are stored in a file in the same order as the BFS19 search. Figure 4.25
shows an example of how a UCT memory tree is saved in a file.

Figure 4.25: UCT Memory Tree: Saving

Finally, we added a flag in the uct node structure, called has unloaded children,
which is used for monitoring the state of the node. If it was loaded from the

19Visit http://en.wikipedia.org/wiki/Breadth-first search for a detailed description of the
breadth-first search algorithm.

http://en.wikipedia.org/wiki/Breadth-first_search

4.3. THEORETIC BASE AND ENHANCEMENTS TO MONTE CARLO GO 53

memory tree, and its children haven’t, then the flag is set to true, otherwise it is
false.

4.3.7 All-moves-as-first

This heuristic has an important word to say for the Monte Carlo Go playing
engines, since it allows the process of evaluating a move to divide the response
time by the size of the board. The idea is simple: after a random game with a
certain score, instead of just updating the mean of the first move of the random
game, the heuristic updates all moves played first on their intersections with the
same color as the first move. It also updates with the opposite score the means of
the moves played first on their intersections with a different color from the first
move [8].

First of all, let’s write the average outcome of all simulations in which move a
was selected in position s, like20

Q(s, a) = X
s
a =

1
T sa (n)

T s
a (n)∑
t=1

Xs
at

=
1

T sa (n)

n∑
i=1

Isi (a)zi, where (4.2)

• T sa (n) is the number of simulations in which a was selected in position s21;

• Xs
at

is the outcome of the tth random game in which move a was selected
in position s;

• Isi (a) is an indicator function returning 1 if move a was selected in position
s for the ith simulation, and 0 otherwise. Notice that T sa (n) =

∑n
i=1 I

s
i (a);

• zi = Xs
aTs

a (i)
represents the outcome of the ith simulation.

Then, we define Q∗(s, a), the average outcome of the random games in which
move a was played for the first time in its intersection, in position s, or any
subsequent position,

Q∗(s, a) =
1
T s∗a

n∑
i=1

Is∗i (a)zi, where (4.3)

20See [12] for reference.
21See Section 4.3.2.

54 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

Is∗i (a) =


1 if s encountered at step k of the ith simulation, and move a was

selected at step t ≥ k for the first time in its intersection;
0 otherwise,

and T s∗a =
∑n

i=1 I
s∗
i (a).

Using Q∗(s, a) we can update the means of almost all moves in the game. Of
course, the heuristic isn’t entirely correct, since various moves may have different
effects on the game depending on the time they were played, but the speedup it
brings to evaluation is worth taking into consideration.

4.3.8 Rapid Action Value Estimates

UCT learns a unique value for each node in the search tree, estimated online from
experience simulated from the current position. However, it cannot generalize
between related positions. The RAVE algorithm provides a simple way to share
experience between classes of related positions, resulting in a rapid, but biased
value estimate [12].

The RAVE value Q̂(s, a) is the average outcome of all simulations in which move
a is selected in position s, or in any subsequent position,

Q̂(s, a) =
1
T̂ sa

n∑
i=1

Îsi (a)zi, where (4.4)

Îsi (a) =


1 if s encountered at step k of the ith simulation, and move a was

selected at any step t ≥ k;
0 otherwise,

and T̂ sa =
∑n

i=1 Î
s
i (a) counts the total number of simulations used to estimate

the RAVE value.

The RAVE value generalizes the value of move a across all positions in the subtree
below s. We can easily notice the close relation to the all-moves-as-first heuristic.

The Monte Carlo value, Q(s, a) is unbiased, but may be high variance if in-
sufficient experience is available. The RAVE value Q̂(s, a) is biased, but lower
variance; it is based on more experience, but this generalization may not always
be appropriate. Hence, the RAVE value is used initially, while gradually shifting
to the Monte Carlo value, by using a linear combination of these values with a
decaying weight.

4.4. ADDING MONTE CARLO TO GNU GO 55

4.4 Adding Monte Carlo to GNU Go

4.4.1 GNU Go engine overview

GNU Go starts by trying to get a good understanding of the current board
position. Using the information found in this first phase, and using additional
move generators, a list of candidate moves is generated. Finally, each of the
candidate moves is valued according to its territorial value (including captures
or life-and-death effects), and possible strategic effects (such as strengthening a
weak group).

Although GNU Go does a lot of reading to analyze possible captures, life and
death of groups etc., it does not have a full-board lookahead and this is the main
point where improvements can be made22.

4.4.1.1 Gathering information

This is by far the most important phase in the move generation, which is done
by the function examine position(). It first calls make worms().

After knowing which worms are tactically stable, GNU Go makes a first picture
of the balance of power across the board: the influence code is called for the first
time.

This is to aid the next step, the analysis of dragons23. Naturally the first step in
the responsible function make dragons() is to identify these dragons, i.e. deter-
mine which worms cannot be disconnected from each other. This is partly done
by patterns, but in most cases the specialized readconnect code is called. This
module does a minimax search to determine whether two given worms can be
connected with, respectively disconnected from each other.

Then GNU Go computes various measures to determine how strong or weak any
given dragon is:

• A crude estimate of the number of eyes is made.

• A guess is made for the potential to escape if the dragon got under attack.

22For a full description of the GNU Go engine, visit the GNU Go documentation page:
http://www.gnu.org/software/gnugo/gnugo toc.html

23By a dragon we mean a group of stones not necessarily directly connected, that cannot be
cut.

http://www.gnu.org/software/gnugo/gnugo_toc.html

56 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

For those dragon that are considered weak, a life and death analysis is made (the
Owl code). If two dragons next to each other are found that are both not alive,
the situation is handled with the semeai module.

The influence code is then called second time to make a detailed analysis of likely
territory. Of course, the life-and-death status of dragons are now taken into
account.

The territorial results of the influence module get corrected by the break-in mod-
ule. This specifically tries to analyze where an opponent could break into an
alleged territory, with sequences that would be too difficult to see for the influ-
ence code.

4.4.1.2 Move Generators

Once it has found out all about the position, GNU Go generates the best move.
Moves are proposed by a number of different modules called move generators. The
move generators themselves do not set the values of the moves, but enumerate
justifications for them, called move reasons. The valuation of the moves comes
last, after all moves and their reasons have been generated.

There are some move generators that only extract data found in the previous
phase, examining the position:

• worm reasons(). Moves that have been found to capture or defend a worm
are proposed as candidates.

• owl reasons(). The status of every dragon, as it has been determined by
the owl code in the previous phase, is reviewed. If the status is critical, the
killing or defending move gets a corresponding move reason.

• semeai move reasons(). Similar to owl reasons, this function proposes
moves relevant for semeais.

• break in move reasons(). This suggests moves that have been found to
break into opponent’s territory by the break-in module.

The following move generators do additional work:

• fuseki(). Generate a move in the early fuseki, either in an empty corner
of from the fuseki database.

4.4. ADDING MONTE CARLO TO GNU GO 57

• shapes(). This is probably the most important move generator. It finds
patterns from patterns.db, patterns2.db, fuseki.db, and the joseki files
in the current position. Each pattern is matched in each of the 8 possible
orientations obtainable by rotation and reflection. If the pattern matches,
a so called ”constraint” may be tested which makes use of reading to deter-
mine if the pattern should be used in the current situation. Such constraints
can make demands on number of liberties of strings, life and death status,
and reading out ladders, etc. The patterns may call helper functions, which
may be hand coded (in patterns/helpers.c) or auto-generated.

The patterns can be of a number of different classes with different goals.
There are e.g. patterns which try to attack or defend groups, patterns
which try to connect or cut groups, and patterns which simply try to make
good shape.24

• combinations(). See if there are any combination threats or atari se-
quences and either propose them or defend against them.

• revise thrashing dragon(). This module does not directly propose move:
If GNU Go is clearly ahead, and the last move played by the opponent is
part of a dead dragon, we want to attack that dragon again to be on the
safe side. This is done be setting the status of this thrashing dragon to
unknown and repeating the shape move generation and move valuation.

• endgame shapes(). If no move is found with a value greater than 6.0, this
module matches a set of extra patterns which are designed for the endgame.
The endgame patterns can be found in patterns/endgame.db.

• revise semeai(). If no move is found, this module changes the status
of opponent groups involved in a semeai from DEAD to UNKNOWN. After this,
genmove runs shapes and endgame shapes again to see if a new move turns
up.

• fill liberty(). Fill a common liberty. This is only used at the end of
the game. If necessary a backfilling or back-capturing move is generated.

4.4.1.3 Move Valuation

After the move generation modules have run, each proposed candidate move goes
through a detailed valuation by the function review move reasons. This invokes
some analysis to try to turn up other move reasons that may have been missed.

24In addition to the large pattern database called by shapes(), pattern matching is used by
other modules for different tasks throughout the program.

58 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

The most important value of a move is its territorial effect. This value is modi-
fied for all move reasons that cannot be expressed directly in terms of territory,
such as combination attacks (where it is not clear which of several strings will
get captured), strategic effects, connection moves, etc. A large set heuristics is
necessary here, e.g. to avoid duplication of such values.

4.4.2 Adding a Monte Carlo module to GNU Go

We try to solve the problem of not having a global view over the board by adding
the Monte Carlo module. The functionality of this module is as follows.

Figure 4.26: GNU Go evaluation combined with Monte Carlo: GNU Go makes
its evaluation, generating reasons and summing them to obtain the final value.
Monte Carlo, on the other hand, explores the UCT tree, finding winning proba-
bilities. The results of the two are then combined, to give the final evaluation.

A separate thread runs random simulations during opponent time, exploring the
UCT tree. Whenever a move is to be generated, the thread pauses, waiting for
GNU Go’s engine to generate a list of moves. Each of the moves has associated
reasons summing up to a value estimating how good it is. After the list is gener-
ated, Monte Carlo resumes for a given amount of time, so that the confidence of
its evaluation is good enough. Then again, it pauses. At this point, every avail-
able move has an associated winning probability. The next step is intuitive. For
every move with positive score in the list generated by GNU Go we take its value
and multiply it by its winning probability (see Figure 4.26). This way, moves
considered good both by GNU Go and Monte Carlo are automatically chosen.
Moreover, moves estimated by GNU Go to have the same local influence, which

4.4. ADDING MONTE CARLO TO GNU GO 59

in fact have different global importance in the game are overall ranked accord-
ingly by Monte Carlo. Also, inherent errors which appear in Monte Carlo-only
applications, due to lack of local precision, are eliminated thanks to GNU Go’s
old-fashioned Computer Go approach.

We added the Monte Carlo evaluation in genmove(), just before computation of
the best value (see Figure 4.27).

60 CHAPTER 4. COMBINING OLD-FASHIONED GO WITH MC GO

Figure 4.27: Integration of Monte Carlo in genmove()

Chapter 5

Results and conclusions

Our application was implemented in ANSI C, respecting the coding style and
conventions of GNU Go 3.6, specified in [3], Section 4.6. The sources were com-
piled under Microsoft R© Windows XP R© Service Pack 2, using Microsoft R© Visual
Studio R© 2005 Team Suite. For testing we used a system with an AMD R© Athlon R©

XP 2700+ (2.17 GHz) CPU1.

5.1 The random simulation

We have tested the speed of random simulations, comparing two of the presented
algorithms, Näıve and Analyze-after. The tests were made on both of the CPU’s
mentioned in the introduction of the chapter, which we will call, for short, Athlon
and Pentium2. Table 5.1, along with Figures 5.1 and 5.2 show a comparison of
the two approaches on the Athlon processor, while Table 5.2 and Figures 5.3
and 5.4, on Pentium.

The results clearly show the speedup of the Analyze-after algorithm over the
Näıve one3.

1In some cases, we used an Intel R© Pentium R© III CPU (1 GHz). However, unless clearly
specified, we will refer to the Athlon R© CPU.

2Keep in mind that the Pentium processor we used is much slower than the Athlon.
3See Sections 4.3.1.1 and 4.3.1.3 for a complete analysis of the two algorithms and explana-

tion of the results presented here.

61

62 CHAPTER 5. RESULTS AND CONCLUSIONS

Table 5.1: Random Simulations: Algorithm Performance Comparison -
Athlon. The statistics are made over 100 tests for each algorithm, with 5 second
running time per test, on the Athlon CPU. The values represent average num-
bers of simulations per second (in 5 second time). µ represents mean value and
σ denotes standard deviation.

Algorithm Min Max µ σ

Näıve 90.99 98.19 95.41 1.38
Analyze-after 1028.4 1205.2 1058.62 38.47

-2

0

2

4

6

8

10

12

14

16

18

92 93 94 95 96 97 98 99

Naive Frequency Distribution

Nr occurences

Figure 5.1: Random Simulations:
Näıve Frequency Distribution - Athlon

-5

0

5

10

15

20

25

30

1020.147 1039.377 1058.607 1077.837 1097.067

Analyze-after Frequency
Distribution

Nr occurences

Figure 5.2: Random Simulations:
Analyze-after Frequency Distribution -
Athlon

Table 5.2: Random Simulations: Algorithm Performance Comparison - Pen-
tium. The statistics are made over 100 tests for each algorithm, with 5 second
running time per test, on the Pentium CPU. The values represent average num-
bers of simulations per second (in 5 second time). µ represents mean value and
σ denotes standard deviation.

Algorithm Min Max µ σ

Näıve 40.87 44.46 42.84 0.78
Analyze-after 399.42 439.96 412.75 5.88

5.2 Monte Carlo GNU Go versus GNU Go 3.6

In the current section we present the outcomes of the games played by our pro-
gram, called Monte Carlo GNU Go (or McGnuGo, for short) and GNU Go 3.6 (or
GnuGo). These represent preliminary results, since the number of games tested
so far is still small. However, we created a statistic based on this data, and we
are able to explain different ups and downs of our approach, which resulted from
these results. Also, we will suggest some possible enhancements to our work,
which, we are confident, will improve the performance of our application.

5.2. MONTE CARLO GNU GO VERSUS GNU GO 3.6 63

0

5

10

15

20

25

41 41.5 42 42.5 43 43.5 44 44.5 45

Naive Frequency Distribution -
Pentium III

Nr occurences

Figure 5.3: Random Simulations:
Näıve Frequency Distribution - Pen-
tium

-2

0

2

4

6

8

10

12

14

16

18

406 408 410 412 414 416 418 420

Analyze-after Frequency
Distribution - Pentium III

Nr occurences

Figure 5.4: Random Simulations:
Analyze-after Frequency Distribution -
Pentium

Table 5.3 shows the results of the games played so far.

Table 5.3: McGnuGo vs GnuGo: We created a statistic over the values δ =
score(McGnuGo)−score(GnuGo). Positive outcomes were counted as McGnuGo
victories, while negative scores as defeats.

Win percentage as White 68.18%
Win percentage as Black 45.45%
Overall win percentage 60.60%
Average outcome (µ) 1.106
Standard deviation (σ) 24.54

We try to analyze first the problems present in our approach, leaving the advan-
tages, which we thing come more straightforward, to the end.

The first thing that we noticed was that when playing with black, our program
lost more games than it won, and especially, the results differed a lot from the
ones recorded when playing with white. Another thing we noticed, was the fact
that most of the times, when losing a little advantage at the beginning of the
game, our engine started making bad moves, thus losing even more, eventually
being defeated by a big difference. One last thing we were able to pick up from the
tests so far is the fact that, whenever in a tactical situation, where the opponent
is clearly in advantage, our program tends to favor moves extending territory
somewhere else on the board, ignoring the thread. This eventually leads to losing
the game.

We try to explain these disabilities in the following paragraphs.

One of the most important issues and reasons for wrong decisions is the fact that,
in many cases, when speaking about random simulations, average outcome 6=

64 CHAPTER 5. RESULTS AND CONCLUSIONS

-1

0

1

2

3

4

5

6

-60 -40 -20 0 20 40 60

Games won vs Games lost - McGnuGo vs GnuGo

Figure 5.5: Distribution of δ in McGnuGo vs GnuGo: Positive values on the x
axis represent McGnuGo wins, while negative values, defeats. The y values give
the number of victories.

actual outcome. In other words, most of the results yielded by random games
are far from what even an average Go player would play, most of them having no
sense at all. This makes the mean of the random simulations to get far from the
actual situation on the board when a tactical situation shows up, and only get
close to it when a clear territorial advantage is present. This explains the fact
that McGnuGo ignores, in most cases, the strategic threat situations.

A potential fix we suggest is to use a temperature variable, similar to the one
in the Simulated Annealing algorithm, which, taking account of previous plays
and current evaluations, favors the moves advised by the GnuGo valuation over
the ones advised by the Monte Carlo module. This variable starts with a higher
chance of deciding over the move for Monte Carlo, and during the game, adapts
to the actual situation.

Another issue, which we consider worth speaking about, is one concerning the
fact that the outcomes of the random simulations, as far as Monte Carlo is con-
cerned, come in two values: 0, for defeat and 1 for victory, no intermediate values.
Whenever our program loses some advantage, most of the random simulations

5.2. MONTE CARLO GNU GO VERSUS GNU GO 3.6 65

start yielding 0, telling the program one thing: the game is most likely lost.
So instead of trying to maximize his score, our program prematurely abandons
hope. The same observation can be made when we are clearly in advantage, which
causes McGnuGo not to make the difference between a potential bad move, and
a better move.

The fix for this problem, we think, comes also by associating a temperature
variable to Monte Carlo, helping it decide whether to make strict evaluations (0
and 1) or differentiated evaluations, depending on the actual score which emerged
from the simulation. When the situation is balanced on the board, the variable
would lean onto the 0/1 evaluation, while when in clear advantage/disadvantage,
it would try to choose the moves yielding better scores rather than just wins/loses.

The inaccuracy of random games, associated with the abandoning hope, also ex-
plains, in part, the fact that black loses more than white: when playing randomly,
the advantage given by the fact that black places the first stone is much smaller
than the standard value of the komi4. This makes Monte Carlo believe that the
game is lost, and acts as described earlier.

A solution which partially solves the problem is setting a score average for the
last number of random simulations and, if the next score is over the average,
decide it to be a victory, while if it is below average, defeat. This should make
the program constantly choose the better moves most of the time.

Another solution to the inaccuracy of the random games is implementing a
pattern-matching approach. See, for further reference, [13], [20], [9] and [11].

Still, most of the times, our Go player is an offensive one, trying to expand
territory as much as possible, and moreover, to invade and capture enemy large
zones. This gives the good results observed in Table 5.3. The balance between
GnuGo’s move choices and Monte Carlo’s enhancements is acceptable and overall,
we consider this to be a first step towards an excellent Go player.

4We used komi = 6.5.

Bibliography

[1] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of
the multiarmed bandit problem. Machine Learning, 47:235–256, 2002.
http://homes.dsi.unimi.it/˜cesabian/Pubblicazioni/ml-02.pdf. [cited at p. 3,

40, 41]

[2] Jeffrey Bagdis. A machine-learning approach to computer go. May 2007.
http://www.cs.princeton.edu/˜jbagdis/jp.pdf. [cited at p. 14]

[3] Arend Bayer, Daniel Bump, Evan Berggren Daniel, David Denholm,
Jerome Dumonteil, Gunnar Farnebäck, Paul Pogonyshev, Thomas Traber,
Tanguy Urvoy, and Inge Wallin. Documentation for the GNU Go Project.
Free Software Foundation Inc, 59 Temple Place and Suite 330 and Boston
and MA 02111-1307 USA, 3.6 edition, July 2003.
http://www.gnu.org/software/gnugo/gnugo toc.html. [cited at p. 61]

[4] B. Bouzy and B. Helmstetter. Monte-carlo go developments.
http://www.math-info.univ-paris5.fr/˜bouzy/publications/bouzy-
helmstetter.pdf. [cited at p. 2, 19,

21]

[5] Bruno Bouzy. Mathematical morphology applied to computer go.
http://www.math-info.univ-paris5.fr/˜bouzy/publications/Bouzy-
IJPRAI.pdf.
[cited at p. 19]

[6] Bruno Bouzy. Old-fashioned computer go vs monte-carlo go. April 2007.
http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial2007/Bruno Bouzy 2007.pdf.
[cited at p. 2, 14, 19, 44]

[7] Bruno Bouzy and Tristan Cazenave. Computer go: An ai oriented survey.
http://www.ai.univ-paris8.fr/˜cazenave/CG-AISurvey.pdf. [cited at p. 14]

67

http://homes.dsi.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf
http://www.cs.princeton.edu/~jbagdis/jp.pdf
http://www.gnu.org/software/gnugo/gnugo_toc.html
http://www.math-info.univ-paris5.fr/~bouzy/publications/bouzy-helmstetter.pdf
http://www.math-info.univ-paris5.fr/~bouzy/publications/bouzy-helmstetter.pdf
http://www.math-info.univ-paris5.fr/~bouzy/publications/Bouzy-IJPRAI.pdf
http://www.math-info.univ-paris5.fr/~bouzy/publications/Bouzy-IJPRAI.pdf
http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial2007/Bruno_Bouzy_2007.pdf
http://www.ai.univ-paris8.fr/~cazenave/CG-AISurvey.pdf

68 BIBLIOGRAPHY

[8] Bruno Bouzy and Guillaume Chaslot. Monte-carlo go reinforcement
learning experiments. http://www.math-info.univ-
paris5.fr/˜bouzy/publications/bouzy-chaslot-cig06.pdf. [cited at p. 4,

53]

[9] Bruno Bouzy and Guillaume Chaslot. Bayesian generation and integration
of k-nearest-neighbor patterns for 19×19 go. IEEE Symposium on
Computational Intelligence in Games, pages 176–181, 2005.
http://www.math-info.univ-paris5.fr/˜bouzy/publications/bouzy-chaslot-
cig05.pdf.
[cited at p. 65]

[10] Bernrd Brügmann. Monte carlo go. October 1993.
http://www.ideanest.com/vegos/MonteCarloGo.pdf. [cited at p. 2, 21]

[11] Rémi Coulom. Computing elo ratings of move patterns in the game of go.
Computer Games Workshop, 2007.
http://remi.coulom.free.fr/Amsterdam2007/MMGoPatterns.pdf.
[cited at p. 65]

[12] Sylvain Gelly and David Silver. Achieving master level play in 9×9
computer go. 2008.
http://www.cs.ualberta.ca/˜silver/research/publications/files/MoGoNectar.pdf.
[cited at p. 4, 53, 54]

[13] Sylvain Gelly, Yizao Wang, Rémi Munos, and Olivier Teytaud.
Modification of uct with patterns in monte-carlo go. Institut National de
Recherche en Informatique et en Automatique, (6062), November 2006.
http://hal.inria.fr/docs/00/12/15/16/PDF/RR-6062.pdf. [cited at p. 3, 40, 41,

43, 45, 49, 50, 65]

[14] Thore Graepel, Mike Goutrié, Marco Krüger, and Ralf Herbrich. Learning
on graphs in the game of go. Computer Science Department - Technical
University of Berlin and Berlin and Germany.
http://research.microsoft.com/˜rherb/papers/graegoukrueher01.ps.gz.
[cited at p. 33]

[15] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning.
2006. http://zaphod.aml.sztaki.hu/papers/ecml06.pdf. [cited at p. 40]

[16] Sensei’s Library. About influence. http://senseis.xmp.net/?AboutInfluence.
[cited at p. 20]

[17] Sensei’s Library. Etymology of go.
http://senseis.xmp.net/?EtymologyOfGo. [cited at p. 9, 20]

http://www.math-info.univ-paris5.fr/~bouzy/publications/bouzy-chaslot-cig06.pdf
http://www.math-info.univ-paris5.fr/~bouzy/publications/bouzy-chaslot-cig06.pdf
http://www.math-info.univ-paris5.fr/~bouzy/publications/bouzy-chaslot-cig05.pdf
http://www.math-info.univ-paris5.fr/~bouzy/publications/bouzy-chaslot-cig05.pdf
http://www.ideanest.com/vegos/MonteCarloGo.pdf
http://remi.coulom.free.fr/Amsterdam2007/MMGoPatterns.pdf
http://www.cs.ualberta.ca/~silver/research/publications/files/MoGoNectar.pdf
http://hal.inria.fr/docs/00/12/15/16/PDF/RR-6062.pdf
http://research.microsoft.com/~rherb/papers/graegoukrueher01.ps.gz
http://zaphod.aml.sztaki.hu/papers/ecml06.pdf
http://senseis.xmp.net/?AboutInfluence
http://senseis.xmp.net/?EtymologyOfGo

69

[18] Emanuela Mateescu and Ioan Maxim. Arbori. T, ara Fagilor, S.C. ROF S.A.
Suceava - 5800 P.O. 1 Box 148 ROMANIA, 1996. [cited at p. 26]

[19] Livia Ralaivola, Lin Wu, and Pierre Baldi. Svm and pattern-enriched
common fate graphs for the game of go.
http://www.ics.uci.edu/˜lwu/go.2005.ESANN.pdf. [cited at p. 33]

[20] David Stern, Ralf Herbrich, and Thore Graepel. Bayesian pattern ranking
for move prediction in the game of go. Proceedings of the International
Conference of Machine Learning, pages 873–880, 2006.
http://research.microsoft.com/˜dstern/papers/sternherbrichgraepel06.pdf.
[cited at p. 65]

[21] Wikipedia, the free encyclopedia. Bézier curve.
http://en.wikipedia.org/wiki/B%C3%A9zier curve. [cited at p. 47]

[22] Wikipedia, the free encyclopedia. Computer go.
http://en.wikipedia.org/wiki/Computer Go. [cited at p. 2, 14]

[23] Wikipedia, the free encyclopedia. Expected value.
http://en.wikipedia.org/wiki/Expected value. [cited at p. 19]

[24] Wikipedia, the free encyclopedia. Go (board game).
http://en.wikipedia.org/wiki/Go (board game). [cited at p. 9, 13]

[25] Wikipedia, the free encyclopedia. Heap (data structure).
http://en.wikipedia.org/wiki/Heap (data structure). [cited at p. 26]

[26] Wikipedia, the free encyclopedia. Multi-armed bandit.
http://en.wikipedia.org/wiki/Multi-armed bandit. [cited at p. 40]

[27] John Tromp. Number of legal go positions.
http://homepages.cwi.nl/˜tromp/go/legal.html. [cited at p. 14]

[28] Erik van der Werf. AI techniques for the game of Go. Datawyse b.v.,
Maastricht, The Netherlands, 2004. ISBN 9052784450 - Universitaire Pers
Maastricht. [cited at p. 10]

http://www.ics.uci.edu/~lwu/go.2005.ESANN.pdf
http://research.microsoft.com/~dstern/papers/sternherbrichgraepel06.pdf
http://en.wikipedia.org/wiki/B%C3%A9zier_curve
http://en.wikipedia.org/wiki/Computer_Go
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Go_(board_game)
http://en.wikipedia.org/wiki/Heap_(data_structure)
http://en.wikipedia.org/wiki/Multi-armed_bandit
http://homepages.cwi.nl/~tromp/go/legal.html

Appendices

71

List of Figures

2.1 The board of Go . 10
2.2 A stone in atari . 10
2.3 A suicide situation. 11
2.4 A false suicide move. 11
2.5 A Ko situation . 11
2.6 A situation in which two advanced players pass. 12
2.7 What happens if the two players don’t pass. 12
2.8 Example of alive groups. 13
2.9 Example of seki. 13

3.1 A cutting point situation . 18
3.2 Influence on the board of Go . 20

4.1 The Array List structure . 24
4.2 The Heap Array structure . 26
4.3 The Visited List structure . 27
4.4 Adding a value smaller than min to the Visited List 27
4.5 Initialization in the näıve random simulation approach 29
4.6 Iteration step in the näıve random simulation approach 29
4.7 The board state structure . 30
4.8 The worm data structure . 30
4.9 A board position (FGR) . 33
4.10 Transformation of FGR to CFG . 33
4.11 The Worm Info structure . 39
4.12 The UCT node structure . 42
4.13 Pseudocode for UCT . 43
4.14 UCT: The beginning of the algorithm 44
4.15 UCT: Legal moves are still available 44
4.16 UCT: The node with the greatest UCB1 value is chosen 44

73

74 LIST OF FIGURES

4.17 UCT: The algorithm after a few iterations 45
4.18 The way a UCT tree grows . 46
4.19 The way an alpha-beta tree grows . 46
4.20 Intersections, according to Key Positions Priority 47
4.21 Key Positions Priority: Distribution 48
4.22 First-play urgency . 49
4.23 Grandparent knowledge . 50
4.24 The memory node structure . 52
4.25 UCT Memory Tree: Saving . 52
4.26 GNU Go evaluation combined with Monte Carlo 58
4.27 Integration of Monte Carlo in genmove() 60

5.1 Random Simulations: Näıve Frequency Distribution - Athlon 62
5.2 Random Simulations: Analyze-after Frequency Distribution - Athlon . 62
5.3 Random Simulations: Näıve Frequency Distribution - Pentium 63
5.4 Random Simulations: Analyze-after Frequency Distribution - Pentium 63
5.5 Distribution of results in McGnuGo vs GnuGo 64

List of Tables

2.1 Go rankings . 13

5.1 Random Simulations: Algorithm Performance Comparison - Athlon . 62
5.2 Random Simulations: Algorithm Performance Comparison - Pentium . 62
5.3 McGnuGo vs GnuGo . 63

75

Index

alive, 13

all-moves-as-first, 50

alpha-beta search, 44

Analyze-after random simulation, 34

Array List, 23

Bézier curve, 45

board state, 29

Common Fate Graph, 33

dan, 14

dead, 13

death, 13

dragon, 52

expected outcome, 19, 21

expected value, 40

exploration vs exploitation dilemma, 39

eye, 13

first-play urgency (FPU), 47

full graph representation, 33

Go, 11

grandparent knowledge, 48

handicap stone, 14

heap, 25

Heap Array, 25

influence, 20

jigo, 12

key positions priority, 45

kill, 13

knowledge bases, 20

Ko, 12

komi, 12

kyu, 14

life, 13

make alive, 13

minimax tree, 44

Monte Carlo, 19, 20, 28

move reasons, 53

Multi-armed Bandit problem, 39

näıve random simulation, 28

old-fashioned Computer Go, 19

random simulation, 21, 28

Rapid Action Value Estimates (RAVE), 51

seki, 14

stone, 12

suicide, 12

UCB1, 41

UCT Node, 41

UCT Tree, 41

uncertainty, 44

unsettled, 13

Upper Confidence for Trees (UCT), 41

Visited List, 26

Wéiq́ı, 11

worm origin, 30

77

	Contents
	1 Motivation and goals
	1.1 Introduction
	1.2 Heuristics for Monte Carlo Go
	1.2.1 Upper Confidence for Trees (UCT)
	1.2.2 All-moves-as-first
	1.2.3 Rapid Action Value Estimation (RAVE)
	1.2.4 Grandparent knowledge

	1.3 The Analyze-after approach to random simulations
	1.4 Integration of Monte Carlo with GNU Go
	1.4.1 GNU Go engine overview
	1.4.2 Adding a Monte Carlo module to GNU Go

	2 Preliminaries
	2.1 The game of Go
	2.1.1 Basic rules
	2.1.2 Important consequences
	2.1.3 Ranks and ratings

	2.2 Computer Go as a field of Artificial Intelligence

	3 Computer Go
	3.1 General overview
	3.1.1 How does a good state look like?
	3.1.2 The size of the territory
	3.1.3 Tactical information (example: weak points)
	3.1.4 The expected outcome of the game

	3.2 Old-fashioned Computer Go vs Monte Carlo Go
	3.2.1 Old-fashioned Computer Go
	3.2.2 Basic Monte Carlo Go

	4 Combining Old-fashioned Go with MC Go
	4.1 Basic ideas and goals
	4.2 General data structures
	4.2.1 Array List
	4.2.2 Heap Array
	4.2.3 Visited List

	4.3 Theoretic base and enhancements to Monte Carlo Go
	4.3.1 The Random Simulation
	4.3.1.1 The naïve approach
	4.3.1.2 The Common Fate Graph approach
	4.3.1.3 The Analyze-after approach

	4.3.2 The Multi-armed Bandit Problem
	4.3.3 Upper Confidence for Trees
	4.3.4 Key Positions Priority
	4.3.4.1 Creating a distribution using Bézier curves

	4.3.5 First-play urgency
	4.3.6 Learning from past experience
	4.3.6.1 Grandparent knowledge
	4.3.6.2 The Experience Tree

	4.3.7 All-moves-as-first
	4.3.8 Rapid Action Value Estimates

	4.4 Adding Monte Carlo to GNU Go
	4.4.1 GNU Go engine overview
	4.4.1.1 Gathering information
	4.4.1.2 Move Generators
	4.4.1.3 Move Valuation

	4.4.2 Adding a Monte Carlo module to GNU Go

	5 Results and conclusions
	5.1 The random simulation
	5.2 Monte Carlo GNU Go versus GNU Go 3.6

	Bibliography
	List of Figures
	List of Tables
	Index

